Контрольная работа: Минимизация неполностью определенных переключательных функций

x

x

x

x

Импликанта x1x2 обязательно должна входить в мин ДНФ, т.к. только она поглощает конституенту x1x2x3x4. Импликанты x1x2 совместно накрывают все конституенты, кроме ; последняя может быть накрыта импликантами или . Поэтому минимальные ДНФ функции f(x1, x2, x3, x4) будут:

Пример. Найти минимальную ДНФ функции f(x1, x2, x3, x4), эквивалентая функция j0(x1, x2, x3, x4) которой имеет вид:

а комбинации являются запрещенными.

Эквивалентную функцию j1(x1, x2, …, xn) можно получить, добавив к СДНФ функции j1(x1, x2, …, xn) запрещенные комбинации переменных:

Проведя операции склеивания и поглощения, найдем простые импликанты функции j1(x1, x2, x3, x4); x1x2x3, x1x3x4, , . Импликантная матрица функции f(x1, x2, x3, x4) имеет вид.

Импли-

канты

Конституенты

x

x

х

х

К-во Просмотров: 344
Бесплатно скачать Контрольная работа: Минимизация неполностью определенных переключательных функций