Контрольная работа: Минимизация неполностью определенных переключательных функций
x1x2x3
х
x1x3x4
Функция f(x1, x2, x3, x4) имеет единственную минимальную ДНФ
В нижней строке импликантной матрицы крестики отсутствуют и, следовательно, импликанта x1x3x4 не поглощает ни одну из конституент единицы функции j0(x1, x2, x3, x4). Это связано с тем, что данная импликанта образовалась в результате склеивания конституент функции j1(x1, x2, x3, x4), которые в функцию j0(x1, x2, x3, x4) не входят.
Чтобы найти простейшее представление неполностью определенной ПФ, кроме минимальных дизъюнктивных форм следует получить минимальные конъюнктивные нормальные формы и выбрать из них ту, которая содержит наименьшее число букв.
Алгоритм получения минимальных конъюнктивных форм подобен рассмотренному алгоритму получения минимальной ДНФ и заключается в следующем.
Пусть задана неполностью определенная функция f(x1, x2, …, xn). Тогда для получения минимальной КНФ достаточно найти сокращенную КНФ эквивалентной функции j0(x1, x2, …, xn), а функцию j1(x1, x2, …, xn) записать в СКНФ. Затем следует составить ипликантную матрицу, включив в нее все конституенты нуля функции j1(x1, x2, …, xn) и все члены сокращенной конъюнктивной нормальной формы функции j0(x1, x2, …, xn). По импликантной матрице рассмотренным выше способом можно получить минимальные КНФ функции f(x1, x2, …, xn).
Пример. Найти минимальную КНФ функции, записанной таблицей.
x1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
x2 |
0 |
0 |
К-во Просмотров: 339
Бесплатно скачать Контрольная работа: Минимизация неполностью определенных переключательных функций
|