Контрольная работа: Моделі дуополії та теорія ігор

Дві однакові фірми мають інформацію про лінійну криву ринкового попиту. Це допоможе зрозуміти суть рівноваги Курно і порівняти її з конкурентною рівновагою, а також рівновагою, котра досягається при злитті двох фірм і сприяє об'єднанню зусиль для досягнення певних рівнів виробництва.

Припустимо, наші дуополісти мають таку криву ринкового попиту:

Ц = 30 - К

де К — сумарний обсяг виробництва обох фірм (тобто К = К1 + К2 ) . Припустімо також, що обидві фірми мають нульові граничні витрати

ГВҲ - ГВт2 = 0.

Ми можемо визначити криву реакціії для фірми № 1 таким чином: для максимізації прибутку фірма встановлює величину граничної виручки на рівні граничних витрат. Сумарна виручка фірми № 1 В1 визначається за рівнянням:

В1 =ЦК1 =(30-К)К1

=30К-(К121

= 30К122 К1

Гранична виручка фірми ГВ1 — це просто додаткова виручка В1 , що є результатом додаткової зміни обсягу виробництва

ГВ1 = В1 /К1 = 30 - 2К1 - К2 .

Тепер, прирівнюючи ГВ1 до нуля (граничні витрати фірми) і розв'язуючи рівняння для К1 , ми визначаемо:

Крива реакції фірми № 1: К1 =15- 1/2К2 . (1)
Ці самі підрахунки справджуються для фірми № 2:

Крива реакції фірми № 2: К2 =15 - 1/2К1 . ( 2)

Рівні виробництва в стані рівноваги — це значення для К1 і К2 , дійсні в точці перетину двох кривих реакцій, тобто величини, отримані при розв'язанні рівнянь (1) і (2). Замінюючи К2 в рівнянні (1) виразом з правої частини рівняння (2), ви можете переконатись, що рівні виробництва в стані рівноваги становлять:

Рівновага Курно: К12 =10.

Сумарний обсяг виробництва становить К = К1 + К2 = 20, отже, ринкова ціна
рівноваги становить Ц = 30 - К = 10.

На мал: 3 показано криві рівноваги Курно та точку рівноваги Курно. Зауважемо, що крива фірми № 1 показує її обсяг виробництва в показниках обсягу виробнидтва фірми № 2. Подібно крива фірми № 2 показує К2 в показниках К1 . (Оскільки фірми є ідентичними, обидві криві мають однакову форму. Вони мають різний вигляд, оскільки одна з них задає К1 в показниках К2 , а інша виражає К2 у показниках К1 ). Точка рівноваги Курно перебуває на перетині двох кривих. В цій точці кожна фірма симізує свій власний прибуток, знаючи обсяг виробництва свого конкурента.

МАЛ. 3. Приклад дуополії.

Крива попиту задана рівнянням Ц = 30 -К, а граничні витрати обох фірм дорівнюють нулю. У точці рівноваги Курно кожна фірма виробляє 10 одиниць. Контактна крива показує комбінації К1 і Кг, які максимізують сумарні прибутки. Якшо фірми змовляться і ділитимуть прибутки порівну, кожна з них вироблятиме 7,5 одиниць. Крім того, показана також конкурєнтна точка рівноваги, в якій ціна дорівнюе граничним витратам, а граничний прибуток дорівнюе нулю.

Ми припустили, що між собою конкурують дві фірми. Припустімо, натомість, що антимонопольне законодавство було дещо пом'якшено, і обидві фірми можуть укласти таємний договір. Вони можуть визначити свої обсяги виробництва таким чином, щоб максимізувати сумарний прибуток і ділити цей прибуток порівну. Сумарний прибуток максимізується вибором сумарного обсягу К так, щоб гранична виручка дорівнювала граничним витратам, а ця величина в даному прикладі дорівнює нулю. Сумарна виручка для обох фірм становить

В = ЦК = (30 - К)К= 30К-К2 ,

так що гранична виручка ГВ = В/К = 30 - 2К

Прирівнюючи ГВ до нуля, ми бачимо, що сумарний прибуток максимізується, коли К=15.

Будь-яке комбінування обсягів виробництва К1 і К2 , що в сумі дає 15 одиниць, максимізує сумарний прибуток. Крива К1 + К2 = 15, яка називаеться кривою конт-рактів, визначає, таким чином, усі пари обсягів К1 і К2 ·, які максимізують сумарний прибуток, її показано на мал. 3. Якщо фірми домовляться ділити прибутки порівну, то кожна з них вироблятиме половину сумарного обсягу: К12 =7,5.

Як і слід очікувати, обидві фірми тепер вироблятимуть меншу кількість - і одержуватимуть більші прибутки, ніж у разі рівноваги Курно. На мал.3 показано цю рівновагу, спричинену змовою фірм, та конкурентні рівні виробництва, що визначаються пррівнюванням ціни до граничних витрат. К12 =15, а це означає, що кожна фірма одержує нульовий граничний прибуток. Зауважимо, що результат Курно значно вигідніший, ніж абсолютна конкуренція, проте не такий виграшний, як здобуток від таємної змови.

1.3. ПЕРЕВАГА ІНІЦІАТОРА — МОДЕЛЬ СТАКЕЛБЕРГА

Ми припустили, що обидва наших дуополісти одночасно приймають рішення щодо своїх обсягів виробництва. Тепєр з'ясуемо, що станється, якщо одна з фірм першою визна-чить свій обсяг. Інтерес для нас мають два питання. По-першє, чи прагнутиме дана фірма першою визначити свій обсяг виробництва. Інакшє кажучи, чи вигідно бути ініціатором? По-другє, якою є наслідкова точка рівноваги (тобто скільки, врешті-решт, вироблятиме кожна фірма)?

Ми знову ж таки припускаемо, що граничні витрати обох фірм дорівнюють нулю, а крива ринкового попиту задана рівнянням Ц= 30 - К, де К — сумарний обсяг вироб-ництва. Припустімо, що фірма № 1 першою визначить свт обсяг виробництва, а після цього фірма № 2, дослідивши обсяг фірми № 1, прийме свое рішенпя щодо обсягу. Таке припущення відмінне від моделі Курно, згідно з якою жодна з фірм не мае можливості рєагувати самостійно.

К-во Просмотров: 205
Бесплатно скачать Контрольная работа: Моделі дуополії та теорія ігор