Контрольная работа: Моделі дуополії та теорія ігор

За моделлю Курно, наприклад, кожна з фірм визначає свій обсяг виробництва, вважаючи обсяги виробництва своїх конкурентів фіксованими. Ми побачили, що в моделі рівноваги Курно у жодної з фірм немає стимулів в однобічному порядку змінювати обсяг виробництва, оскільки кожна фірма, маючи інформацію про рішення своїх конкурентів, покаже все, на що вона здатна. Звідси, рівновага Курно є рівновагою за Нешем . Ми також розглянули моделі, в яких фірми вибирають для себе ціни, приймаючи як задані ціни своїх конкурентів. І знову ж, в точці рівноваги за Нешем, кожна фірма одержує максимально можливий прибуток, знаючи ціни своїх конкурентів, і, таким чином, причин змінювати ціну в неї немає.

Доцільно порівняти концепцію рівноваги за Нешем із концепцією рівноваги при домінуючих стратегіях:

Домінуючі стратегії: Я роблю все можливе, незалежно від того, що робите ви.

Ви робите все можливе, незалежно від того, що роблю я.

Рівновага за Нешем: Я роблю все можливе, знаючи, що робите ви.

Ви робите все можливе, знаючи, що роблю я.

Зауважте, що рівновага домінуючих стратегій є особливим випадком рівноваги за Нешем.

Загалом у грі може існувати не лише одна точка рівноваги за Нешем. Іноді точка рівноваги за Нешем узагалі відсутня, а іноді таких точок є декілька (тобто існує декілька само реалізуючих та стабільних наборів стратегій).

Концепція рівноваги за Нешем значною мірою ґрунтується на індивідуальному раціоналізмі. Вибір стратегії кожним гравцем залежить не лише від його власної раціональності, а й також від способу мислення його опонента. Цей факт може обмежувати простір діяльності як показано в таблиці 1.

У цій грі “чесна” гра є для гравця № 2 домінуючою стратегію, оскільки, користуючись нею, гравець № 2 виграє (одержавши 1 замість 0), незалежно від того, що робитиме гравець № 1. Таким чином, гравцю № 1 слід очікувати, що гравець № 2 дотримуватиметься “правильної” стратегії. В цьому випадку гравцю № 1 краще зіграти в “нижню” гру (одержавши 2 одиниці), ніж грати у “верхню” гру (одержавши 1). Очевидно, що результат (справа вгорі) виявиться для даної гри точкою рівноваги за Нешем, і можемо пересвідчитись, що це єдина точка рівноваги за Нешем. Проте зауважте, що гравець № 1 почувався б краще, якби гравець № 2 розумів гру і діяв раціонально. Якби гравець № 2 припустився помилки і зіграв “нечесно”, то це завдало б гравцю № 1 значних утрат.


Таблиця 1. Стратегії максиміну

Гравець № 2

Лівий бік Правий бік

Гравець №1

Верх

Низ

1,0

1,1

-1000,0

2,1

Якщо діяти обережно і враховувати, що гравець № 2 може бути не повністю поінформованою або нераціонально мислячою особою, можемо вибрати варіант “верх”, і в цьому разі обов'язково одержати прибуток у розмірі 1, і не ризикуватимете втратити 1000. Така стратегія називається стратегією максиміну, оскільки вона максимізує мінімальний прибуток, який можна одержати. Якби обидва гравці користувалися такими стратегіями, результатом була б верхня права клітинка матриці. Стратегія максиміну консервативна, проте вона не максимізує прибуток (оскільки гравець № 1 одержить прибуток у розмірі 1, а не 2). Якби гравець № 1 знав напевне, що гравець № 2 користуватиметься стратегією максиміну, то перший віддав би перевагу ігровому варіанту “низ” (і одержав би 2), замість того, щоб користуватися стратегією максиміну і грати варіант “верх”.

В іграх ми розглядали стратегії, в яких гравці роблять однозначний вибір або вдаються до однозначних дій. Стратегії такого роду називаються чистими стратегіями. Проте існують й ігри, в яких дотримання чистих стратегій — не найкращий вихід.

Приклад цьому — гра “орел і решка”. В цій грі кожен із гравців вибирає для себе орла чи решку й обидва гравці одночасно відкривають свої монетки. Якщо монети в обох гравців випали однаковим боком, перемагає гравець А, якому гравець Б сплачує долар. Якщо сторони монет не співпадають, то виграш в один долар належить гравцеві Б. Матрицю виграшів для цієї гри показано в таблиці 2.

Таблиця 2. “Орел або решка”

Гравець Б

Орел Решка

Гравець А

Орел

Решка

К-во Просмотров: 203
Бесплатно скачать Контрольная работа: Моделі дуополії та теорія ігор