Контрольная работа: Неорганічні сполуки. Основні закони хімії та їх наслідки

Наприклад, ЗКС: 4К+ ; ОН‾. Тоді, заряд ВКС в першому випадку дорівнює 4- , у другому - 1+ . Запис: z ( ВКС) = 4- , z (ВКС) = 1+ .

Заряд комплексоутворювача дорівнює алгебраїчній сумі зарядів всіх йонів, які є у внутрішній координаційній сфері.

Центральним атомом може бути метал-катіон (наприклад, Fе2+ , Fе3+ , Со2+ Си2+ , тощо), метал-атом (наприклад, Fе, Со, Nі, Мn тощо), неметал-катіон (наприклад, Sі4+ , S6+ , Р5+ тощо), неметал-аніон (наприклад, NН4 + - N3- , Н3 О+ - О2- ), а лігандом - негативно заряджений простий чи складний аніон (наприклад, F- , Ѳ- , Вr‾, І- , S2 O3 2- тощо) полярна молекула (наприклад, NН3 , Н2 О тощо), молекули органічних речовин, які легко поляризуються (наприклад, (СН2 ) 2 (NН2 ) 2 - етилендіамін - еn тощо) або неполярні молекули органічних речовин.

Здатність центрального атома до комплексоутворення залежить від величини ступеня окиснення, радіуса атома чи йона його, природи лігандів, рН, температури, природи зовнішньої координаційної сфери, природи розчинника.

Відомі к. ч.: 1, 2, 3, 4, б, 6, 7, 8, 9,12. Найчастіше зустрічаються координаційні сполуки з к. ч.2, 4 і 6, причому часто к. ч. в 2 рази більше числового значення ступеня окиснення центрального атома. Ці числа відповідають найбільш симетричній геометричній конфігурації комплекса (октаедр (к. ч. = 6), тетраедр або квадрат (к. ч. = 4) і лінійна (к. ч. = 2)).

Для пояснення комплексоутворення використовують електростатичні уявлення. Утворення комплекса - це наслідок електростатичної взаємодії між центральним атомом (комплексоутворювачем) і лігандами - йонами або молекулами. Допускається, що частинки, які утворюють комплекс, шари з певним зарядом і радіусом, які не деформуються. Стійкий комплекс утворюється тоді, коли сили притягання до центрального атома комплекса зрівноважують сили відштовхування між лігандами.

Наприклад, аквакомплекси лужних і лужноземельних металів [Nа (ОН2 ) 6 ] + , [Са (ОН2 ) 6 ] 2+ тощо утворюються за рахунок електростатичного притягання.

Згідно з електростатичними уявленнями в аквакомплексах лужні і лужноземельні метал-іони утримують молекули дигідроген оксиду (Н2 О) за рахунок електростатичних сил взаємодії метал-іон - диполь (Н2 О). Сила притягання між метал-іон - диполь і сила відштовхування між лігандами (Н2 0) урівноважують одна одну при певному значенні координаційного числа, що відповідає найбільшій енергії зв'язку комплекса.

Електростатичні уявлення при утворенні комплекса дозволили оцінити стійкість комплексів, передбачити координаційне число і просторове розміщення лігандів. Електростатична теорія наочна, тому нею нині користуються для якісних висновків, наприклад, для пояснення утворення аквакомплексів лужних і лужноземельних металів.

У решти комплексних сполук природа хімічного зв'язку принципово не відрізняється від природи зв'язку у простих сполуках. У внутрішній сфері між центральним атомом і лігандами формуються полярні ковалентні зв'язки за донорно-акцепторним механізмом, а зовнішня координаційна сфера утримується біля комплекса за рахунок електростатичної йон-йонної взаємодії, яка за характером наближається до йонного зв'язку.

Утворення хімічного зв'язку і геометричну будову комплекса пояснюють за допомогою методу валентних зв'язків І методу молекулярних орбіталей, які взаємно доповнюють один одного.

Для передбачення реальної геометричної будови комплексних сполук використовують уявлення про гібридизацію АО центрального атома. Згідно з теорією гібридизації валентні АО центрального атома, які приймають участь в утворенні хімічного зв'язку, у комплексах втрачають свою індивідуальність, тобто не є чистими. Вони гібридизуються і одержують точну направленість у просторі, причому їх взаємна направленість максимально симетрична (для цього числа АО) відносно центра центрального атома комплексної сполуки. При цьому перекриття гібридних АО центрального атома з АО лігандів посилюється, міцність хімічного зв'язку зростає і комплексна сполука одержує оптимальну для неї стійкість.

Залежно від числа гібридних АО центрального атома є кілька типів стереохімічного розміщення осей симетрії гібридних орбіталей. Таке положення гібридних орбіталей призводить до фіксації лігандів у просторі навколо центрального атома, що дозволяє геометрично описати будову всього комплекса.

Отже, геометричну конфігурацію комплексної сполуки визначає тип гібридизації АО. При sр-гібридизації АО к. ч. дорівнює 2 і комплекс має лінійну геометрію; при sр3 -гібридизації АО - тетраедричну (к. ч. = 4), dsр2 - квадратну (к. ч. = 4), sр3 d2 - або d23 - октаедричну форму (к. ч. = 6).

3. Загальна характеристика неметалів VІІ групи. Хлор. Характеристика елемента. Поширення у природі. Добування. Фізичні і хімічні властивості. Застосування

Елементи VІІ групи періодичної системи ділять на дві підгрупи: головну - підгрупу галогенів, та побічну - підгрупу марганцю. До цієї ж групи відносять і водень, хоча його атом має на зовнішньому, валентному рівні єдиний електрон, і його слід відносити до І групи.

До підгрупи галогенів відносять фтор, хлор, бром, йод і астат. Перші чотири зустрічаються у природі, а останній добуто штучно. Слово галоген означає солетворний .

Всі галогени мають структуру зовнішньої електронної оболонки s 2 р 5 . Тому вони легко приймають електрон, утворюючи стійку благородногазову оболонку s 2 р 6 . Радіус атома збільшується у ряду фтор - астат. У тому ж порядку зменшується спорідненість атома елемента до електрону.

Галогени - надзвичайно активні елементи. Вони здатні віднімати електрони не лише у атомів, які легко їх віддають, а і у йонів і навіть витісняти інші галогени з їх сполук.

Із усіх галогенів лише фтор не має незаповненого d -рівня. Тому він не може мати більше одного неспареного електрона і виявляє валентність тільки -1. В атомах інших галогенів є незаповнений d -рівень, що дає їм можливість виявляти валентність -1, +1, +3, +5 та +7.

Через високу активність хлор у вільному стані у природі не зустрічається. Широко відомі його природні сполуки - хлориди лужних та лужноземельних металів, серед яких найбільш розповсюдженими є кухонна сіль NaСl, сильвініт - суміш хлоридів натрію і калію, та карналіт КСl∙МgСl2 ∙6H2 O.

У лабораторії хлор отримують дією концентрованої соляної кислоти на різні окислювачі, наприклад діоксид марганцю (при нагріванні, перманганат калію або бертолетову сіль.

У промисловості хлор отримують електролізом розчинів або розплавів хлоридів лужних металів. За умови електролізу розплав лужного металу на катоді виділяється лужний метал, на аноді - хлор.

За звичайних умов хлор - газ жовто-зеленого кольору з різким запахом, отруйний. Хлор у 2,5 рази важчий за повітря.

При 20°С в одному об’ємі води розчиняється близько 2 об’ємів хлору, такий розчин називають хлорною водою. За атмосферного тиску хлор при -34°С переходить у рідкий стан, а при - 101°С у твердий стан. Хлор добре розчинний у багатьох органічних розчинниках, особливо в тетрахлориді вуглецю, з яким не взаємодіє.

На зовнішньому електронному рівні атом хлору має 7 електронів, тому легко приєднує електрон, утворюючи аніон Сl‾.

Завдяки наявності незаповненого d -рівня можуть з’являтись 1, 3, 5 або 7 неспарених електронів, і у кисневмісних сполуках хлор може виявляти валентність +1, +3, +5 та +7.

Без присутності вологи хлор досить інертний, проте навіть за наявності слідів вологи активність хлору різко зростає. Хлор добре взаємодіє з багатьма металами та неметалами, наприклад:

2Fе + 3Сl2 → 2FеСl3

Sі + 2Сl2 → SіСl4

К-во Просмотров: 235
Бесплатно скачать Контрольная работа: Неорганічні сполуки. Основні закони хімії та їх наслідки