Контрольная работа: Нестандартные методы решения тригонометрических уравнений графический и функциональный

(2)

Теорема 1. Корни уравнения (1) являются корнями уравнения (2).

Теорема 2. Если f(x) – возрастающая функция на интервале a<f(x)<b, то на данном интервале уравнения (1) и (2) равносильны. Если f(x) – убывающая функция на интервале a<f(x)<b, n - нечетное, то на данном интервале уравнения (1) и (2) равносильны.

Из последней теоремы вытекают следствие, также используемое в решениях:

Следствие 1 . Если f(x) возрастает на всей своей области определения, то на данном интервале уравнения (1) и (2) равносильны. Если f(x) убывает на всей своей области определения, n - нечетное, то на данном интервале уравнения (1) и (2) равносильны.

Теорема 3. Если в уравнении f(x)=g(x) при любом допустимом х выполнются условия f(x)≥a, g(x)≤a, где а – некоторое действительное число, то дано уравнение равносильно системе

Следствие 2 . Если в уравнении f(x)+g(x)=a+bпри любом допустимом х f(x)≤a, g(x)≤b, то данное уравнение равносильно системе

Функциональный метод решения уравнений часто используется в комбинации с графическим, так как оба эти метода основаны на одних свойствах функций. Иногда комбинацию этих методов называют графоаналитическим методом.

Метод функциональной подстановки

Частным случаем функционального метода является метод функциональной подстановки – самый, пожалуй, распространенный метод решения сложных задач математики. Суть метода состоит в введении новой переменной y=ѓ(x), применение которой приводит к более простому выражению. Отдельным случаем функциональной подстановки является тригонометрическая подстановка.

Тригонометрическое уравнение вида

R(sinkx ,cosnx , tgmx , ctglx ) = 0 (3)

где R – рациональная функция, k , n , m , l ÎZ, с помощью тригонометрических формул двойного и тройного аргумента, а также формул сложения можно свести к рациональному уравнению уравнению относительно аргументов sinx ,cosx , tgx ,ctgx , после чего уравнение (3) может быть сведено к рациональному уравнению относительно t=tg(x /2) c помощью формул универсальной тригонометрической подстановки

2tg(x/2) 1-tgІ(x/2)

sinx = cosx =

1+tgІ(x/2) 1+tgІ(x/2)

(4)

2tg(x/2) 1-tgІ(x/2)

tgx = ctgx =

1-tgІ(x/2) 2tg(x/2)

Следует отметить, что применение формул (4) может приводить к сужению ОДЗ исходного уравнения, поскольку tg(x/2) не определен в точках x=π+2πk, kÎZ, поэтому в таких случаях нужно проверять, являются ли углы x=π+2πk, kÎZ корнями исходного уравнения.

Практикум

sinx +√2-sinІx + sinx √2-sinІx = 3


Данное уравнение рационально решать методом функциональной подстановки.

Пустьu = sinx и v = +√2-sinІx . Так как –1≤u≤1 и v≥1, то u+v≥0. Кроме того, имеем uІ + vІ =2.

В таком случае из уравнения получаем систему уравнений


u + v + uv = 3

uІ + vІ =2

Пусть теперь r = u+v и s=uv, тогда из системы уравнений следует


r + s = 3

rІ - 2s = 2

К-во Просмотров: 201
Бесплатно скачать Контрольная работа: Нестандартные методы решения тригонометрических уравнений графический и функциональный