Контрольная работа: Одиночные усилительные каскады на биполярных транзисторов
??????? 4???????????? ??????? ????????????? ?? ??????????? ??? ???? ? ????? ????? (?) ? ? ????? ????????? (?) ??????? ??????????? ?? ???????? ?????????????? ???? ? ????? ????? ? ? ????? ????????? ? ?????????? ???????? ?????? ?????? ????????????? ?? ????????:
и .
Снятие выходных характеристик при различных температурах должно проводиться при поддержании постоянства параметров (IЭ=const в схеме с ОБ и IБ=const в схеме с ОЭ). Поэтому в схеме с ОБ при IЭ=const рост IК будет определяться только увеличением IКБО (рисунок 5, а).
Рисунок 5—Зависимость выходных характеристик БТ от температуры для схем включения с общей базой (а) и с общим эмиттером (б)
Однако обычно IКБО значительно меньше αIЭ, изменение IК составляет доли процента и его можно не учитывать. В схеме с общим эмиттером положение иное. Здесь параметром является IБ и его надо поддерживать неизменным при изменении температуры. Будем считать в первом приближении, что коэффициент передачи b не зависит от температуры. Постоянство b∙IБ означает, что температурная зависимость IК будет определяться слагаемым (b + 1)IКБО. Ток IКБО (как тепловой ток перехода) примерно удваивается при увеличении температуры на 10°С, и при b >> 1 прирост тока (b + 1)IКБО может оказаться сравнимым с исходным значением коллекторного тока и даже превысить его. На рисунке 5, б показано большое смещение выходных характеристик вверх. Сильное влияние температуры на выходные характеристики в схеме с ОЭ может привести к потере работоспособности конкретных устройств, если не принять схемотехнические меры для стабилизации тока или термостатирование.
13. Какую форму имеет кривая выходного напряжения, если входной сигнал превышает допустимое значение?
Рабочей областью выходных характеристик в режиме усиления является область, ограниченная предельно допустимыми значениями и областями насыщения и отсечки. В этой области характеристики можно считать практически линейными, а транзистор - линейным элементом, т.е. полностью открывается, и он перестает быть управляемым током базы, т.е. переходит в ключевой режим работы.
Рисунок 6—Амплитудная характеристика
14. Какой порядок имеет коэффициент усиления по току, по напряжению и входное сопротивление каскада ОЭ?
При включении с общим эмиттером усиление по току имеет большую величину и происходит без поворота фазы за счёт транзистора. Усиление по напряжению в режиме холостого хода велико и имеет практически такую же величину, как в схеме с общей базой. Однако при реальных сопротивлениях нагрузки усиление по напряжению получается большим, чем в схеме с общей базой, ввиду меньшего по сравнению с этой схемой выходного сопротивления каскада. Передача напряжения осуществляется с вносимым транзистором поворотом фазы на π. Входное сопротивление больше, чем для схемы с общей базой, и значительно меньше, чем для схемы с общим коллектором. Выходное сопротивление меньше, чем для схемы с общей базой, и значительно больше, чем для схемы с общим коллектором.
15. Какой порядок имеет коэффициент усиления по току, по напряжению и входное сопротивление каскада ОК?
Усиление по току имеет большую величину, практически равную усилению в схеме с общим эмиттером, и происходит с поворотом фазы на π за счёт транзистора. Усиление по напряжению отсутствует, а передача напряжения осуществляется без поворота фазы. Входное сопротивление значительно больше, а выходное сопротивление значительно меньше, чем для схем с общей базой и с общим эмиттером. Так как входное напряжение каскада повторяется на выходе, т.е. в эмиттерной цепи, практически без изменения по величине и по фазе, каскад по схеме с общим коллектором носит название эмиттерного повторителя. Такой каскад применяется для преобразования сопротивлений без использования трансформатора.
Рисунок 7—принципиальные электрические схемы усилительных каскадов с общим эмиттером (а) и с общим коллектором (б)
Таблица 1—Параметры элементов усилительных каскадов
R | R1 | R2 | R к1 | Rэ1 | Rг1 | Rг2 | R3 | R4 | Rэ2 |
кОм | 22 | 20 | 1,3 | 1 | 1,1 | 1,1 | 18 | 200 | 2 |
С | Ср1 | С1р1 | Ср2 | С1р2 | Сэ1 | Ср3 | С1р3 | Ср4 | С1р4 |
мкФ | 30 | 0,05 | 30 | 0,05 | 200 | 30 | 0,01 | 30 | 0,05 |
Характеристики транзистора КТ312А:
Ikmax=30мА; UКЭmax=20В; Pkmax=225мВТ; IКБО=0,2 мкА; h21Э=10…100; fmax=80МГц; rБ=900 Ом; rЭ=30 Ом; r*К=30 кОм; β=50; Ск=4 пФ.
Рисунок 8—Характеристики транзистора КТ312А с проведёнными линиями нагрузки MN по постоянному току и нагрузки СD по переменному току, а также выбрана точка покоя А
Данные для расчёта: Ек=15В, Rн1=1кОм, Rн2=0,2кОм, Сн1=Сн2=0,01мкФ
Проводим линию нагрузки по постоянному току MN, используя выходные характеристики транзистора (рисунок 8). Линия нагрузки MN стоится по двум точкам. Точка N соответствует режиму холостого хода, когда Iк=0, а Uкэ=Ек. Соответственно:
Iк=0, Uкэ=Ек=15 В.
Точка M соответствует режиму, когда Uкэ=0, Iк=Ек/(Rк1+Rэ1).
Соответственно:
Uкэ=0, Iк=Ек/(Rк1+Rэ1)=15/(1,3+1)=6,52 мА.
Выбраем рабочую точку покоя А примерно посредине линии нагрузки по постоянному току MN, проводим через точку покоя А линию нагрузки СD по переменному току под углом g, котангенс которого пропорционален результирующему сопротивлению в цепи коллектора по переменному току:
ctgg=(a/b)Rн1~;
где a—масштабный коэффициент по оси ординат, мА/мм; b—масштабный коэффициент по оси абсцисс, В/мм.
Rн1~=(Rк1Rн1)/(Rк1+Rн1), кОм