Контрольная работа: Определение моментов инерции тел методом трифилярного подвеса
Координаты точки А1 верхнего диска в системе координат, указанной на рисунке, равны: х1=r; y1 = 0; z1 = 0. Координаты же точки А крепления нижней платформы к нити подвеса в момент времени, когда платформа повернулась на малый угол a, равны, соответственно,
x = R×cos(a); у = R×sin(a); z = z.
Расстояние между точками А и А1 равно длине нити подвеса (l), и поскольку при колебаниях платформы длина нитей не меняется, то в любой момент времени справедливо соотношение:
.
С учетом указанных выше координат точек А и А1 на основании (11) можно написать для произвольного значения угла а поворота следующее выражение:
.
Если a = 0, то
.
Здесь x = R; у = 0; z = z0 - координаты точки А нижней платформы в момент времени, когда a = 0. Приравнивая выражения (12) и (13) и раскрывая скобки, получаем:
Так как угол a мал, то для него можно использовать следующие соотношения:
sin(a) »a;
Используя их, из (14) для малых углов a получаем:
.
Учитывая соотношение (14), получаем:
;
или
.
Подставив в (9) найденное значение (z0-z), имеем
;
или
.
Дифференцируя выражение (21) по времени и учитывая, что полная энергия системы Е с течением времени не меняется, получаем:
.
Из последнего выражения следует:
.
Обозначив