Контрольная работа: Основные электроматериалы
Рисунок 1.13 – Температурная зависимость для нейтральных твердых диэлектриков
Диэлектрическая проницаемость не зависит от частоты изменения поля, т.к. время установления электронной поляризации очень мало (см. рис. 1.14).
Рисунок 1.14 – Частотная зависимость для нейтральных твердых диэлектриков
2) Ионные кристаллические диэлектрики с плотной упаковкой частиц
Диэлектрическая проницаемость этих веществ находится в широких пределах ( например: ).
Температурный коэффициент положителен, поскольку повышение температуры не только уменьшает плотность вещества, но и увеличивает полярность ионов, вследствие ослабления внутренних связей. Основные закономерности изменения от температуры и частоты приведены в ионной поляризации. Исключение составляют кристаллы, содержащие ионы титана, этих кристаллов отрицателен и это объясняется преобладанием электронной поляризации.
3) Ионные кристаллические диэлектрики с неплотной упаковкой частиц
Ионные кристаллические диэлектрики с неплотной упаковкой частиц обладают электронной, ионной, а также ионно-релаксационной поляризациями. Они характеризуются в большинстве случаев невысоким исходным значением и большим положительным коэффициентом . Примером является электротехнический фарфор (см. рис. 1.15).
Рисунок 1.15 – Температурная зависимость для электротехнического фарфора
4) Неорганические стекла (квазиаморфные диэлектрики)
Диэлектрическая проницаемость находится в сравнительно узких пределах от 4 до 20, – положителен. Но можно при необходимости получить материал и с отрицательным , если в состав стекла ввести в виде механических примесей кристаллы с отрицательным (рутил, ).
5) Полярные органические диэлектрики
В твердом состоянии проявляют дипольно-релаксационную поляризацию. Диэлектрическая проницаемость полярных диэлектриков зависит от температуры и частоты изменения электрического поля. В температурной зависимости наблюдается максимум, в частотной зависимости при достижении граничной частоты наблюдается спад до уровня электронной поляризации.
Диэлектрическая проницаемость сложных по составу диэлектриков
В сложных по составу диэлектриках, представляющих собой механические смеси химически невзаимодействующих компонентов с различной диэлектрической проницаемостью, результирующую диэлектрическую проницаемость можно определить на основании уравнения Лихтенеккера или логарифмического закона смещения:
,
где – диэлектрические проницаемости смеси и входящих компонентов;
– объемная концентрация компонентов в относительных единицах, удовлетворяющая условию ;
– величина, характеризующая распределение компонентов в данном диэлектрике и принимающая значение от +1 до -1.
Если два компонента распределены хаотически ( например, в керамике), то уравнение Лихтенеккера после преобразования и подстановки х=0 имеет вид:
.
Результирующая меньше максимальной диэлектрической проницаемости () из входящих в смесь компонентов. Температурный коэффициент смеси определяется по формуле:
Или
,
где – табличные значения температурных коэффициентов входящих компонентов.
Все диэлектрики по виду подразделяются на несколько групп. К первой группе можно отнести диэлектрики, обладающие в основном только электронной поляризацией, например неполярные и слабополярные твердые вещества в кристаллическом и аморфном состояниях (парафин, сера, полистирол), а так же неполярные и слабополярные жидкости и газы (бензол, водород и т.д.)