Контрольная работа: Передаточные функции одноконтурной системы
Отсюда получено:
.
Если обозначить передаточные функции объекта как
и ,
то получается уравнение Y(s) = Wx(s).X(s) + WF(s).F(s). Структурная схема объекта приведена на рис. 3.
Рис. 3
Характеристическая функция имеет вид:
,
а характеристическое уравнение:
.
Корни этого уравнения равны:
и .
Распределение корней на комплексной плоскости показано на рис. 4:
Рис. 4.
Все корни характеристического уравнения лежат в левой полуплоскости, очевидно, что объект устойчив.
2. Дана передаточная функция вида:
Зная, что по определению, , получим:
, тогда:
.
Раскрывая скобки:
Применяя к полученному выражению обратное преобразование Лапласа, находим искомое дифференциальное уравнение:
.
Практическая работа № 2
Дана одноконтурная АСР, для которой определена передаточная функция регулятора (Р) с настройками и дифференциальное уравнение объекта управления (ОУ). Требуется определить:
- передаточную функцию разомкнутой системы W∞(s),