Контрольная работа: Полурешетки m-степеней
Проверка того, что это частичный порядок, очевидна. Операция является для этого порядка операцией взятия точной верхней грани.
Определение 21:
Множество называется продуктивным, если существует рекурсивная функция , называемая продуктивной функцией для , такая, что
Ясно, что продуктивное множество не может быть р.п. Если бы то Ø, что невозможно.
Определение 22:
Множество называется креативным, если оно р.п. и продуктивно.
Заметим, что креативные множества по теореме Поста не могут быть рекурсивными. Примером креативного множества будет
Действительно
откуда рекурсивная функция является продуктивной функцией для .
Имеет место следующее утверждение: если В - р.п. множество, А -креативно, то - креативно.[1,5]
§2 Простейшие свойства m – степеней
Ведем отношение частного порядка на множестве m – степеней:
Обозначим через L частично упорядоченное множество m – степеней.
Утверждение 2.1: множество L является верхней полурешеткой.
Доказательство:
Рассмотрим , где
.
Докажем, что эта функция является точной верхней гранью для произвольных ЧРФ α и β.
Рассмотрим γ’ :
для рекурсивных функций g, f.
Определим функцию .
Проверим следующие равенства: .
Пусть x=2t, тогда и .
Пусть x=2t+1, тогда и .
Таким образом, равенство справедливо.
Следовательно, функция является точной верхней гранью для произвольных ЧРФ α и β, ч.т.д.