Контрольная работа: Понятие о корреляции и корреляционном анализе в психологии
Корреляционным называется исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи между несколькими (двумя и более) переменными. В психологии переменными могут выступать психические свойства, процессы, состояния и др.
"Корреляция" в прямом переводе означает "соотношение". Если изменение одной переменной сопровождается изменением другой, то можно говорить о корреляции этих переменных. Наличие корреляции двух переменных ничего не говорит о причинно-следственных зависимостях между ними, но дает возможность выдвинуть такую гипотезу. Отсутствие же корреляции позволяет отвергнуть гипотезу о причинно-следственной связи переменных. Различают несколько интерпретаций наличия корреляционной связи между двумя измерениями:
1. Прямая корреляционная связь. Уровень одной переменной непосредственно соответствует уровню другой. Примером является закон Хика: скорость переработки информации пропорциональна логарифму от числа альтернатив. Другой пример: корреляция высокой личностной пластичности и склонности к смене социальных установок.
2. Корреляция, обусловленная третьей переменной. Две переменные (а, с) связаны одна с другой через третью (в), не измеренную в ходе исследования. По правилу транзитивности, если есть R (а, Ь) и R (Ь, с), то R (а, с). Примером подобной корреляции является установленный психологами США факт связи уровня интеллекта с уровнем доходов. Если бы такое исследование проводилось в сегодняшней России, то результаты были бы иными. Очевидно, все дело в структуре общества. Скорость опознания изображения при быстром предъявлении и словарный запас испытуемых также положительно коррелируют. Скрытой переменной, обусловливающей эту корреляцию, является общий интеллект.
3. Случайная корреляция, не обусловленная никакой переменной.
4. Корреляция, обусловленная неоднородностью выборки. Представим себе, что выборка, которую мы будем обследовать, состоит из двух однородных групп. Например, мы хотим выяснить, связана ли принадлежность к полу с уровнем экстраверсии. Считаем, что "измерение" пола трудностей не вызывает, экстраверсию же измеряем с помощью опросником Айзенка ETI-1. У нас две группы: мужчины-математики и женщины-журналистки. Не удивительно, если мы получим линейную зависимость между полом и уровнем экстраверсии — интроверсии: большинство мужчин будут интровертами, большинство женщин — экстравертами (3, 4).
2. ВИДЫ КОРРЕЛЯЦИЙ
Виды корреляционной связи между измеренными переменными могут быть различны: так корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна, если с увеличением или уменьшением одной переменной, вторая переменная также растёт, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами (полиномиальная, гиперболическая). (5).
Если повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Чем выше личностная тревожность, тем больше риск заболеть язвой желудка. Возрастание громкости звука сопровождается ощущением повышения его тона.
Если рост уровня одной переменной сопровождается снижением уровня другой, то мы имеем дело с отрицательной корреляцией. По данным Зайонца, число детей в семье отрицательно коррелирует с уровнем их интеллекта. Чем боязливей особь, тем меньше у нее шансов занять доминирующее положение в группе.
Нулевой называется корреляция при отсутствии связи переменных. (2).
В психологии практически нет примеров строго линейных связей (положительных или отрицательных). Большинство связей — нелинейные. Классический пример нелинейной зависимости — закон Йеркса—Додсона:. возрастание мотивации первоначально повышает эффективность научения, а затем наступает снижение продуктивности (эффект "перемотивации"). Другим примером является связь между уровнем мотивации достижений и выбором задач различной трудности. Лица, мотивированные надеждой на успех, предпочитают задания среднего диапазона трудности — частота выборов на шкале трудности описывается колоколообразной кривой.
Примеры распределений испытуемых в пространстве двух признаков.
а) строгая положительная корреляция, б) сильная положительная корреляция, в) слабая положительная корреляция, г) нулевая корреляция, д) отрицательная корреляция, е) строгая отрицательная корреляция, ж) нелинейная корреляция, з) нелинейная корреляция.
3. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Графики корреляционных зависимостей строят по уравнениям следующих функций:
Yx = F(X) или Xy = F(Y),(формула 1)
которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Yи X.
Переменные X и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции. Представим соотношения между типами шкал, в которых могут быть измерены переменные X и Y и соответствующими мерами связи в виде таблицы:
Тип шкалы | Мера связи | |
Переменная X | Переменная Y | |
Интервальная или отношений | Интервальная или отношений | Коэффициент Пирсона rxy |
Ранговая, интервальная или отношений | Ранговая, интервальная или отношений | Коэффициент Спирменаρxy |
Ранговая | Ранговая | Коэффициент Кендаллаτ |
Дихотомическая | Дихотомическая | Коэффициентφ |
Дихотомическая | Ранговая, | Рангово-бисериальный Rrb |
Дихотомическая | Интервальная или отношений | Бисериальный Rбис |
Интервальная | Ранговая | Не разработан |
3.1 Коэффициент корреляции Пирсона
Формула расчета коэффициента корреляции построена таким образом, что, если связь между признаками имеет линейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициентом линейной корреляции Пирсона. Если же связь между переменными X и Y не линейна, то Пирсон предложил для оценки тесноты этой связи так называемое корреляционное отношение.
Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 — являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 — следовательно произошла ошибка в вычислениях.
Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной Х будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными X и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.
Знак коэффициента корреляции очень важен для интерпретации полученной связи. Подчеркнем еще раз, что если знак коэффициента линейной корреляции — плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.
Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания — произволен. Это может быть как переменная X так и переменная Y. Однако если психолог будет считать, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот. Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости.
В общем виде формула для подсчета коэффициента корреляции такова:
(формула 2)