Контрольная работа: Понятие о корреляции и корреляционном анализе в психологии
1. Сравниваемые переменные должны быть получены в порядковой (ранговой) шкале, но могут быть измерены также в шкале интервалов и отношений.
2. Характер распределения коррелируемых величин не имеет значения.
3. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.
4. Таблицы для определения критических значений коэффициента корреляции Спирмена рассчитаны от числа признаков равных n = 5 до n = 40 и при большем числе сравниваемых переменных следует использовать таблицу для пирсоновского коэффициента корреляции . Нахождение критических значений осуществляется при k = n.
3.4 Расчет уровней значимости коэффициентов корреляции
Все коэффициенты корреляции, которые будут рассмотрены ниже, не имеют стандартных таблиц для нахождения критических значений. В этих случаях поиск критических значений осуществляется с помощью t-критерия Стьюдента по формуле:
((формула 5)
где rэмп — коэффициент корреляции,
n— число коррелируемых признаков, а величина Тф проверяется на уровень значимости по таблице для t-критерия Стьюдента. Число степеней свободы в этом случае будет равно k = n — 2.
Однако с помощью формулы можно проводить оценку уровней значимости и коэффициентов корреляции Пирсона и Спирмена.
3.5 Коэффициент корреляции «φ»
При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент «φ», или, как назвал эту статистику ее автор К. Пирсон, — «коэффициент ассоциации».
Величина коэффициента «φ»лежит в интервале +1 и -1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков.
В общем виде формула вычисления коэффициента корреляции «φ» выглядит так:
(формула 6)
где рх — частота или доля признака, имеющего 1 по X,
(1 - рх) — доля или частота признака, имеющего 0 по X;
ру — частота или доля признака, имеющего 1 по Y,
(1 - ру) — доля или частота признака, имеющего 0 по Y,
рху — доля или частота признака, имеющая 1 одновременно как по X, так и по Y.
Частоты вычисляется следующим образом: подсчитывается количество 1 в переменной Х и полученная величина делится на общее число элементов этой переменной — N. Аналогично подсчитываются частоты для переменной Y. Обозначение рху — соответствует частоте или доле признаков, имеющих единицу как по Х так и по Y.
Второй способ вычисления коэффициента «φ»
Коэффициент «φ» можно вычислить, не применяя метод кодирования. В этом случае используется так называемая четырехпольная таблица, или таблица сопряженности. Каждую клетку таблицы обозначим соответствующими буквами а, b, с и d.
Приведем общую формулу расчета коэффициента «φ» по таблице сопряженности:
(формула 7)
Для применения коэффициента корреляции «φ» необходимо соблюдать следующие условия:
1. Сравниваемые признаки должны быть измерены в дихотомической шкале.
2. Число варьирующих признаков в сравниваемых переменных Х и Y должно быть одинаковым.
3. Для оценки уровня достоверности коэффициента «φ» следует пользоваться формулой (5) и таблицей критических значений для t-критерия Стьюдента при k = n - 2.