Контрольная работа: Принятие решений в условиях неопределенности
E{a4}= (1/4)(30+22+19+15)=21,5
Таким образом, наилучшим уровнем предложения в соответствии с критерием Лапласа будет a2.
Минимаксный (максиминный) критерий
Является наиболее осторожным, поскольку основывается на выборе наилучшей из наихудших возможностей. Если результат n (ai , q j) представляет потери лица, принимающего решение, для действия ai наибольшие потери независимо от возможного состояния q j будут равны
В этом случае критерий называется максиминным.
Пример. Рассмотрим предыдущий пример. Так как n (ai , q j) представляют потери, применим минимаксный критерий. Результаты вычислений представим в виде следующей таблицы.
q 1 | q 2 | q 3 | q 4 | ||
a1 | 5 | 10 | 18 | 25 | 25 |
a2 | 8 | 7 | 8 | 23 | 23 |
a3 | 21 | 18 | 12 | 21 | 21 |
a4 | 30 | 22 | 19 | 15 | 30 |
Минимаксной стратегией будет a3 .
Подходы к учету неопределенности при описании рисков. В теории принятия решений в настоящее время при компьютерном и математическом моделировании для описания неопределенностей чаще всего используют такие математические средства, как:
- вероятностно-статистические методы,
- методы статистики нечисловых данных, в том числе интервальной статистики и интервальной математики, а также методы теории нечеткости,
- методы теории конфликтов (теории игр).
Они применяются в имитационных, эконометрических, экономико-математических моделях, реализованных обычно в виде программных продуктов.
Некоторые виды неопределенностей связаны с безразличными к организации силами - природными (погодные условия) или общественными (смена правительства). Если явление достаточно часто повторяется, то его естественно описывать в вероятностных терминах. Так, прогноз урожайности зерновых вполне естественно вести в вероятностных терминах. Если событие единично, то вероятностное описание вызывает внутренний протест, поскольку частотная интерпретация вероятности невозможна. Так, для описания неопределенности, связанной с исходами выборов или со сменой правительства, лучше использовать методы теории нечеткости, в частности, интервальной математики (интервал – удобный частный случай описания нечеткого множества). Наконец, если неопределенность связана с активными действиями соперников или партнеров, целесообразно применять методы анализа конфликтных ситуаций, т.е. методы теории игр, прежде всего антагонистических игр, но иногда полезны и более новые методы кооперативных игр, нацеленных на получение устойчивого компромисса.
Иногда под уменьшением риска понимают уменьшение дисперсии случайной величины, поскольку при этом уменьшается неопределенность. В теории принятия решений риск - это плата за принятие решения, отличного от оптимального, он обычно выражается как математическое ожидание. В экономике плата измеряется обычно в денежных единицах, т.е. в виде финансового потока (потока платежей и поступлений) в условиях неопределенности.
Критерий Сэвиджа
Этот критерий характеризуется крайней осторожной (пессимистической) позицией к возможным потерям из-за отсутствия достоверных сведений о том, какая из ситуаций, влияющих на экономический результат, будет иметь место в конкретном случае. Реализуется применительно к матрице рисков и потерь.
Матрица потерь строится следующим образом:
1.Находим наибольшее значение по каждому случайному событию Qi
2. Выписываем их в качестве утопических точек отдельно
3.Вычитаем из каждой такой утопической точки соответствующие этому случайному события Хi (пример: для Q1: Xy-X1,Xy-X2,Xy-X3.....).
4.Получаем новую матрицу потерь.
В рамках такого подхода функция, задающая семейство «линий уровня» определяется равенством:
F(u,v,......,z)= max(ay -u, ay -v,......, ay -z)
Целеваяфункциякритерия:
Zs=min(Ki), где Ki=max(Lij), Lij=max(Aij)-Ay, где (Lij) – матрицапотерь
i – вариант возможного решения ЛПР
j – вариант возможной ситуации
Aij – доход ЛПР, если будет принято решение i, а ситуация сложится j