Контрольная работа: Прогнозирование урожайности различными методами
590,9296
Коэффициенты
Стандартная ошибка
t-статистика
P-Значение
Нижние 95%
Верхние 95%
Y-пересечение
3,014625
1,592152
1,893427
0,072162
-0,29644
6,325686
Переменная X 1
0,548419
0,11612
4,722879
0,000116
0,306935
0,789903
Регрессия для гиперболической функции:
Регрессия для параболической функции:
Регрессия для показательной функции:
Как видно из этих данных, коэффициент детерминации у регрессии для гиперболической функции значительно хуже, чем у других моделей. А константа и коэффициент при переменной в модели параболической регрессии не значимы согласно t-критерию Стьюдента.
Коэффициенты детерминации для моделей линейной и показательной регрессий примерно одиноковы, причем R-квадрат больше у показательной регрессии. Сравним эти 2 модели по другим показателям. Рассчитаем среднюю квадратическую ошибку уравнения тренда и информационные критерии Акейка и Шварца: