Контрольная работа: Расчет математического ожидания и дисперсии
1. Пароль для входа в компьютерную базу данных состоит из 7 цифр. Какова вероятность правильного набора пароля с первого раза, если: д) на нечетных местах комбинации стоят одинаковые цифры
Решение:
P(A) =
n – общее число исходов.
Допустим на нечетных местах стоит 0_0_0_0_0
На трех других местах может быть: n0= комбинаций ( 10 цифр, 3 места), если на нечетных местах стоит 1, и т.д.
n= n0+n2+…+n0=10∙=
m= число благоприятных исходов
m=0
P(A) = =0,0001
Ответ: 0,0001
2. Девять карточек, пронумерованных цифрами от 1 до 9, расположены друг за другом в случайном порядке. Определить вероятности следующих событий: Г) каждая из последних 4 карточек имеет номер больше 3
Будем использовать классическое определение вероятности:
,
где m – число исходов, благоприятствующих осуществлению события , а n – число всех элементарных равновозможных исходов.
Сразу вычислим, что - число различных способов разложить карточки.
Найдем число исходов, благоприятствующих этому событию. Номер больше трех имеют карточки: 4,5,6,7,8,9, всего 6 карточек. Выбираем на последнее место карточку 6 способами (любую из этих шести), на предпоследнее место карточку 5 способами (любую из оставшихся пяти, одна уже выбрана), на третье с конца место карточку 4 способами, на четвертое с конца место карточку 3 способами. Получили всего способов разложить последние 4 карточки так, чтобы их номер был больше 3. Теперь раскладываем оставшиеся 5 карточек 5!=120 способами. Итого получаем 120*360=43200 способов.
Тогда вероятность .
Ответ: 0,119
3. Отрезок AB разделен точкой C в отношении 3:7. На этот отрезок наудачу бросается 5 точек. Найти наивероятнейшее число точек, попавших на отрезок AC и вероятность именно такого числа точек на отрезке AC
Бросается 5 точек n=5
Вероятность попасть на АС для одной точки Р== 0,3
1)-наивероятнейшее число точек, попавших на АС
np –q ≤< np +p
p= 0,3; q=1-p=0,7
5∙ 0,3-0,7 ≤ < 5∙ 0,3+ 0,3
0,8 ≤ < 1,8
=1
2) Вероятность именно такого числа точек на АС
--> ЧИТАТЬ ПОЛНОСТЬЮ <--