Контрольная работа: Расчет математического ожидания и дисперсии

Применим формулу Бернулли.

(K) = .. ;

(1)= ..= ∙0,3 ∙= 5 ∙ 0,3∙ = 0,36

Ответ: 0,36

4. Устройство состоит из трех независимо работающих элементов. Вероятности отказа первого, второго и третьего элементов соответственно равны 0,2, 01 и 0,6. Найти вероятность того, что не отказал первый элемент, если известно, что отказали какие-то два элемента

Решение. =0,2 =0,1 =0,6 - отказ.

= 1- =0,8 =0,4- не отказ.

Событие А- отказали какие-то два

- первый отказал Р()=0,2=

(А)=+ 0,2∙0,1∙0,4+ 0,2∙0,9∙0,6=0,116

-первый не отказал Р=0,8=

(А)= 0,048

По формуле полной вероятности

P(A)=0,2∙0,116+0,8∙0,048=0,0616

Искомую вероятность найдем по формуле Байеса:

()= =

Ответ: 0,62


5. Бросаются две игральные кости. Найти для произведения очков на выпавших гранях: математическое ожидание; дисперсию

Решение. Введем независимые случайные величины и равные, соответственно, числу очков, выпавших на первой и на второй кости. Они имеют одинаковые распределения:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Найдем математическое ожидание

.

Найдем дисперсию

.

Тогда математическое ожидание суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равно

.

Дисперсия суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равна (так как бросания костей независимы):


.

Ответ: 7; 35/6.

6. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 30 и 4. Найти вероятность того, что Х в 5 испытаниях ровно 3 раза примет значение, заключенное в интервале (29, 31)

К-во Просмотров: 154
Бесплатно скачать Контрольная работа: Расчет математического ожидания и дисперсии