Контрольная работа: Расчет основных размеров восстановительной и рафинировочной печей
Определить основные размеры восстановительной печи для выплавки 45% FeSi для суточной производительности.
Производительность печи в сутки = 50 т.
Определить основные параметры рафинировочной печи для выплавки низкоуглеродистого FeCr для суточной производительности.
Производительность печи в сутки = 10 т.
СОДЕРЖАНИЕ
Введение
1. Определение основных параметров восстановительных электропечей
1.1 Определение мощности трансформатора и электрических параметров восстановительной печи
1.2 Определение геометрических размеров восстановительной печи
2. Определение основных параметров рафинировочных электропечей
2.1 Определение электрических параметров рафинировочной печи
2.2 Определение геометрических параметров рафинировочной печи
Библиографический список.
ВВЕДЕНИЕ
В ниже проведенной работе мы производим расчет основных размеров и параметров ферросплавных печей, в которых мы получаем различные ферросплавы. Ферросплавы — это сплавы железа с кремнием, марганцем, хромом, вольфрамом и другими элементами, применяемые при производстве стали для улучшения ее свойств и легирования. Вводить в сталь нужный элемент не в виде чистого металла, а в виде его сплава с железом удобнее вследствие более низкой температуры его плавления и выгоднее, так как стоимость ведущего элемента в сплаве с железом ниже по сравнению со стоимостью технически чистого металла.
Исходным сырьем для получения ферросплавов служат руды или концентраты. Для производства основных сплавов - ферросилиция, ферромарганца и феррохрома - используют руды, так как в них высоко содержание окислов элемента, подлежащего восстановлению. При производстве ферровольфрама, ферромолибдена, феррованадия, ферротитана и других сплавов руду вследствие малой концентрации в ней полезного элемента обогащают, получая концентрат с достаточно высоким содержанием окислов основного элемента.
Ферросплавы получают восстановлением окислов соответствующих металлов. Для получения любого сплава необходимо выбрать подходящий восстановитель и создать условия, обеспечивающие высокое извлечение ценного (ведущего) элемента из перерабатываемого сырья. Пользуясь законами термодинамики, можно определить химическое сродство элементов к кислороду. По возрастанию этого сродства элементы распределяются в следующий ряд: Ni, Fе, Мn, V, Сг, Si, Ti, Al, Mg, Ca. Каждый нижестоящий элемент может служить восстановителем для вышестоящего. Особое место занимает углерод, который может восстанавливать эти элементы лишь при превышении температуры выше определенных значений, возрастающих по мере увеличения химического сродства к кислороду каждого элемента, например, расчеты показывают, что для марганца эта температура составляет около 1150°С, для кремния 1450 °С и для алюминия 1900 оС.
Восстановительные процессы облегчаются, если они проходят в присутствии железа или его окислов. Растворяя восстановленный элемент или образуя с ним химическое соединение, железо уменьшает его активность, выводит его из зоны реакции, препятствует обратной реакции- окислению. В ряде случаев температура плавления сплава с железом ниже температуры плавления восстанавливаемого элемента, следовательно, реакция может протекать при более низкой температуре.
В зависимости от вида применяемого восстановителя различают три основных способа получения ферросплавов: углевосстановительный, силикотермический и алюминотермический. Наиболее дешевым является углерод, поэтому его используют при производстве углеродистых ферромарганца и феррохрома, а также всех сплавов с кремнием (кремний препятствует переходу углерода в сплав). Реакции восстановления металлов и их окислов углеродом эндотермичные, поэтому углевосстановительный процесс требует подвода тепла. Полнота извлечения ведущего элемента зависит от температуры и давления, при которых ведут процесс, от состава шлака и сплава.
Силикотермическим и алюминотермическим способами получают ферросплавы с пониженным или очень низким содержанием углерода: среднеуглеродистые и малоуглеродистые ферромарганец и, безуглеродистый феррохром, металлические хром и марганец, ферросплавы и лигатуры с титаном, ванадием, вольфрамом, молибденом, цирконием, бором и другими металлами. Когда выделяющегося при экзотермических реакциях тепла достаточно для получения металла и шлака в жидком виде, плавку проводят в обособленных очагах - футерованных шахтах. При нехватке тепла плавку проводят в дуговых печах сталеплавильного типа.
Теперь проведем краткое описание самих ферросплавных печей.
Восстановительные ферросплавные печи работают непрерывно. В работающей печи электроды погружены в твердую шихту, которую пополняют по мере ее проплавления; сплав и шлак выпускают периодически. Печи этого типа оснащены мощными трансформаторами (7,5—65 MB . A). Печи трехфазные, стационарные или вращающиеся ранее изготовляли открытыми, а новые печи закрыты сводами.
Дуговые руднотермические печи предназначены для производства различных ферросплавов, кристаллического кремния, технического хрома и марганца, карбида кальция, а также для получения титанистых, марганцевых и синтетических шлаков. Подводимая к печи мощность выделяется в дуговом разряде, в шихте и расплаве. При этом распределение мощности определяется типом печи и свойствами шихтовых материалов, шлака и металла. В печах, выплавляющих, например, высококремнистые ферросплавы, в большей степени выражен дуговой режим, а при выплавке углеродистого ферромарганца - режим сопротивления. В работающей печи ток протекает как по электродам через дуговой разряд по схеме "звезда", так и через шихту по схеме "треугольник" и "звезда". Поэтому для трехфазной печи необходимо рассматривать совмещение вертикального и горизонтального электрических полей, т. е. трехмерное поле.
В процессе плавки электрическая энергия превращается в тепловую. За счет тепла, выделяемого в дуговом разряде и в шихте, а также за счет тепла экзотермических реакций (и физического тепла шихтовых материалов) совершаются физико-химические процессы плавки. С уровня колошника в зону высоких температур (при выплавке ферросилиция и ферромарганца температура дуги достигает 6000-7000°К) постепенно опускаются все новые и новые порции шихты, а снизу вверх направлен поток газов и паров перерабатываемых материалов. Таким образом, в действующей дуговой печи при выплавке ферросплавов получают развитие сложные электрические, тепловые и металлургические процессы. В табл. 1 приведен размерный ряд производства рафинировочных и восстановительных электропечей для производства ферросплавов. Рафинировочные печи обычно работают периодическим процессом, а восстановительные - непрерывным с периодическимвыпуском продуктов плавки (металла и шлака).
Таблица 1 Размерный ряд рафинировочных и восстановительных электропечей для производства ферросплавов.
Тип печи | Номинальная мощность, мВА | Ванна |
Механизм наклона |
Механизм вращения | Выплавляемый сплав |
РАФИНИРОВОЧНЫЕ ЭЛЕКТРОПЕЧИ | |||||
РКО-2,5 | 2,5 | откр. | есть | есть |
--> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 353
Бесплатно скачать Контрольная работа: Расчет основных размеров восстановительной и рафинировочной печей
|