Контрольная работа: Решение линейной системы уравнений с тремя неизвестными
3) Исследуем функцию на экстремумы и интервалы монотонности. С этой целью найдем ее производную и приравняем к нулю:
Следовательно, функция не имеет критических точек первого рода.
Так как y’ < 0 для всех х, то функция убывает во всей области определения
4) Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем вторую производную заданной функции и приравняем ее к нулю:
Итак функция не имеет точек перегиба. Разобьем область определения точкой х = 1 в каждой из которых установим знак второй производной:
х | (-¥; 0) | 0 | (0; ¥) |
f ‘’(x) | - | не существует | + |
f(x) | Ç | не существует | È |
5) Выясним наличие у графика заданной функции асимптот. Для определения параметров уравнения асимптоты y = kx + b воспользуемся формулами
Таким образом, у графика заданной функции есть наклонная асимптота
y = 0*x + 1 = 1.
6) построим график функции