Контрольная работа: Решение задач линейного программирования различными методами
Задание 1
Решение задач линейного программирования графическим методом
Цель задания: приобрести практические навыки решения задач линейного программирования графическим методом.
Индивидуальное задание
Найти максимум и минимум линейной формы графическим методом по исходным данным задачи ЛП (таблица 1).
Таблица 1
Номер варианта | Целевая функция | Ограничения задачи линейного программирования |
6 |
Решение задачи
Построим область L допустимых решений. Заменим в каждом неравенстве задачи знак неравенства на знак равенства. Получим уравнения прямых:
x 1 +4x 2 =8, 2 x 1 - x 2 =4, x 1 + x 2 =1, x 1 =0, x 2 =0.
Область L определяется как общая часть полуплоскостей, соответствующих неравенствам ограничений (рисунок 1).
Рисунок 1. Графическое решение задачи ЛП
В данной задаче она составляет многоугольник ABCD . Для нахождения экстремума функции Z =-2 x 1 +4 x 2 , строим разрешающую прямую, приравнивая линейную форму нулю:Z =0. Строим градиент целевой функции C(2;4).
Минимальное значение функция принимает в точке D(4,5;0,7) , а максимальное в точке B.
Анализ решения задачи линейного программирования
В результате решения задачи линейного программирования были получены минимум и максимум рассматриваемой функции, вследствие того, что область ограничений представляет собой замкнутый многоугольник, если бы фигура области ограничений была не замкнута, функция могла бы не иметь одного или обоих экстремумов в заданной области.
Задание 2
Решение задач ЛП симплексным методом с использованием симплекс-таблиц
Цель задания : закрепить теоретические сведения и приобрести практические навыки решения задач ЛП симплекс-методом.
Индивидуальное задание
Найти максимум линейной формы
Z = c 1 x 1 + c 2 x 2
при условиях:
Данные представлены в таблице 2.
Номер варианта | A11 | A12 | A21 | A22 | A31 | A32 | B1 | B2 | B3 | C1 | C 2 |
6 | 4 | 1 | 3 | 6 | 8 | 7 | 43 | 74 | 76 | 7 | 4 |
Приведем задачу ЛП к каноническому виду:
-Z’= -Z = -7x1 -4x2
при ограничениях
--> ЧИТАТЬ ПОЛНОСТЬЮ <--