Контрольная работа: Рівняння регресії і побудова економетричних моделей
I. Оцінімо параметр b0. Для цього розрахуємо коефіцієнт статистику t0.
b0 = 1,3053
Висуваємо гіпотези:
H0: β0 = 0
H1: β0 ≠ 0
Рівень значущості α = 0,05
Кількість ступенів свободи k = n – 2; k = 10 – 2 = 8.
За допомогою таблиці теста Стьюдента визначимо, що t0,05 = 2,31.
Висновок: за п’ятивідсоткового рівня значущості можна стверджувати, що з імовірністю, більшою за95% оцінка b0 є статистично значущою, що потребує розрахунку інтервалу довіри.
β0 = b0 ± t0,05*σb0 = 1,3053 ± 2,31*0,0529 = 1,3053 ± 0,122199
Р(1,183101< β0 < 1,427499) = (1 – α) *100% = 95%
Таким чином, в генеральній сукупності β0 з імовірністю 95% знаходиться в інтервалі (1,183101; 1,427499).
II. Оцінімо параметр b1.
b1 = 0,0115
Визначимо t-статистику для b1:
В нашому випадку tст1 ≈ trxy. Приблизна рівність допустима (trxy = 0,1166) і означає, що в розрахунках були погрішності, якими можна зневажати.
Висуваємо гіпотези:
H0: β0 = 0
H1: β0 ≠ 0
tст1 = 0,1122
Рівень значущості α = 0,05.
Кількість ступенів свободи k = n – 2; k = 10 – 2 = 8.
За допомогою таблиці теста Стьюдента визначимо, що t0,05 = 2,31.
tст1< t0,05.
Висновок: за п’ятивідсоткового рівня значущості можна стверджувати, що з імовірністю, більшою за 95%, оцінка параметра b1 не є статистично значущою, звідки робимо висновок, що інтервал довіри не розраховується.
4. Точкове прогнозування yn+1 для , де р = 0,95.
ŷn+1 = b0 + b1*xn+1