Контрольная работа: Создание безотходной технологии в производстве кальцинированной соды
В таблице 4.1 приведена сравнительная характеристика карбонизационных колонн [1, 2].
Таблица 4.1 – Сравнительная характеристика карбонизационных колонн применяемых в производстве кальцинированной соды
Параметры | Тарелки | ||
Пассетные | Перекрестно-точные | ||
1-й тип | 2-й тип | ||
Диаметр, м | 3/2,8 | 2,68 | 3/2,8 |
Высота, м | 28 | 26,1 | 28 |
Число холодильных царг | 8 | 10 | 8 |
Число абсорбционных тарелок | 19 | 12 | 12 |
Поверхность теплопередачи, м2 | 1344 | 1000 | 1344 |
Производительность, т соды в сутки | 230 | 220 | 260–280 |
Степень утилизации натрия, % | 72–74 | 72–74 | 72–74 |
Влажность NaHCO3 , % | 16–18 | 16–18 | 16–18 |
Относительная стоимость колонны, % | 100 | 75 | 95 |
Из приведенной таблицы видно, что колонны с перекрестно-точными тарелками, не только имеют более низкую стоимость, чем колонны с пассетными тарелками, но и по некоторым параметрам превосходят их.
5. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ
В разделе 3 дана характеристика энергетических ресурсов используемых в производстве кальцинированной соды. В таблице 5.1 приведены нормы расхода этих ресурсов на 1 тонну выпускаемой соды [1–3]:
Таблица 5.1 – Усредненные энергетические затраты на 1 тонну 100 %–ой кальцинированной соды
Затраты | Расходный коэффициент |
Электроэнергия, МДж (кВт·ч) | 220 (61) |
Пар на технологические нужды, ГДж (Гкал) | 5,36 (1,28) |
Вода (оборотная), м3 | 150 |
Топливо (в пересчете на условное топливо), кг: для кальцинации гидрокарбоната натрия для обжига карбонатного сырья |
130 95 |
При этом необходимо отметить, что в окружающую среду отводится около 1 МВт тепловой энергии на 1 тонну кальцинированной соды.
Ниже приведены обобщенные нормы расхода для производства кальцинированной соды аммиачным методом [2]:
Таблица 5.2 – Расходные нормы по сырью для производства 1 т соды
Затраты | Расходный коэффициент |
Рассол очищенный (310 г/л NaCl), м3 | 5,1 |
Известняк (в пересчете на 100 % СаСО3 ), кг | 1280 |
Кальцинированная сода на очистку сырого рассола от солей кальция, кг | 22 |
Аммиачная вода (25,5 % NH3 ), кг | 9 |
Гидросульфит натрия (в пересчете на 22,0 % NaHS), кг | 5 |
6. ОТХОДЫ В ПРОИЗВОДСТВЕ СОДЫ И МЕТОДЫ ИХ ПЕРЕРАБОТКИ
В традиционной технологии кальцинированной соды на 1 тонну продукта приходятся следующие отходы:
хлоридные стоки, содержащие около 115–125 г/л СаС12 , 55–58 г/л NaCl и 20–25 г/л взвеси Са(ОН)2 , СаСО3 и CaSO4 – около 9,1 м3 ;
шлам от очистки рассола, содержащий 250–300 г/л взвеси Са(ОН)2 и Mg(OH)2 – 0,l м3 , шлам дистилляции;
недопал при обжиге мела или известняка, отделяемый в процессе получения известковой суспензии и содержащий СаСО3 , СаО и золу топлива, около 55 кг.
В так называемые производственные отходы переходит весь содержащийся в сырье кальций, хлор и около 1/3 натрия. В пересчете на твердое состояние при производстве 1 т кальцинированной соды в отходах содержится около 1 т СаСl2 , 0,5 т NaCl, 200 кг шлама и 55 кг недопала [1–3, 5]. На рис. 6.1 изображена простая схема цикла.
Рис. 6.1 – Простая схема цикла производства кальцинированной соды
6.1 ПЕРЕРАБОТКА ЖИДКИХ ОТХОДОВ
Для фильтровой жидкости предлагается получение хлористого аммония.
При производстве хлорида аммония часть или весь поток фильтровой жидкости после барабанных вакуум-фильтров направляется на дегазацию (узел XII), которая осуществляется паром (раздел 3 рис. 3.2). Десорбированные из жидкости в парогазовый поток аммиак и диоксида углерода поступают на абсорбцию II.
На абсорбцию в отделение II дополнительно подается газообразный аммиак от аммиачно-испарительной установки для восполнения убыли аммиака, который выводится из цикла хлоридом аммония, растворенным в дегазированной фильтровой жидкости. Дегазированная фильтровальная жидкость направляется на выпарку (отделение XIII), после которой образующаяся соляная пульпа проходит стадию отстаивания и центрифугирования (XIV), сушки и прокалки поваренной соли (XV).
Соляной маточный раствор подается на вакуум-кристаллизацию (XVI); пульпа хлорида аммония поступает далее на отстаивание и центрифугирование (XVII); хлорид аммония проходит сушку, зернение (XVIII) и направляется на склад готовой продукции.
Существует и предлагается несколько способов утилизации дистиллерной жидкости: первое – переработка осветленной дистиллерной жидкости, которая заключается в получении хлорида кальция, второе – после соответствующей подготовки закачивание дистиллерной жидкости в нефтяные скважины, третье – получение из дистиллерной жидкости химически осажденного карбоната кальция [8].
При производстве СаСl2 весь поток дистиллерной суспензии (рис. 3.2) или его часть подвергается предварительной карбонизации и далее поступает на отстаивание от взвешенных частиц (XIX). Шлам из отстойника направляется для дальнейшей переработки (стадия XXIV), а осветленный раствор сливается в ёмкость (XX), в которую подают затравку из активного сульфат кальция для предотвращения инкрустирования выпарной трёхкорпусной прямоточной батареи. Дистиллерная жидкость упаривается до достижения концентрации хлорида кальция 18 % масс. Во второй трёхкорпусной прямоточной батарее (стадия XXI) дистиллерная жидкость упаривается до концентрации хлорида кальция 38 % масс, с выделением основной массы поваренной соли. Осветленный 38 %-ый раствор раствор хлорида кальция подается на вакуум-кристаллизатор (стадия XXII), в котором происходит образование 40 %-го раствора хлорида кальция и выделение хлорида натрия. Далее раствор подается в аппарат XXIII, где упаривается с образованием плава, содержащего 72 % хлорида кальция. После чего плав чешуируется, закаливается, сушится, охлаждается и направляется на склад готовой продукции.
Способ подготовки дистиллерной жидкости, используемой для закачки в нефтяные скважины, включает следующие стадии:
– отстой суспензии в накопителе – “белое море”;
– разбавление ответвленной дистиллерной жидкости водой с целью снятия пересыщения по гипсу;