Контрольная работа: Способи захисту населення при виникненні надзвичайних ситуацій
Pф= Pф.ч.+ Pф.п.=44+132= 176 Па
4. Дати поняття ризику, прийнятого ризику та визначити ризик
Найбільш розповсюдженою оцінкою небезпек є ризик. У тлумачному словнику наводиться таке визначення поняття «ризик»: «Усвідомлена можливість небезпеки». Точнішим, очевидно, слід вважати інше визначення: «Усвідомлена ймовірність небезпеки». В технічних термінах, наприклад, враховуючи, що кількість смертельних випадків в результаті автомобільних аварій у США протягом року становить 50 тис, ймовірність загибелі будь-якого з 200 млн. жителів США внаслідок автомобільної аварії протягом року становить:
50 000 смертей/рік: 200 000 000 =2,5x10 смертей: людино/рік
Через те, що наслідком події може бути не лише смерть, вираз індивідуального ризику можна записати в такому більш загальному вигляді:
ризик (наслідок/час) - частота (подія / одиниця часу) х величина (наслідок/подія).
Повертаючись до розглянутого прикладу, якщо кількість автомобільних аварій у США протягом року становить 50 млн., а частота такого наслідку аварії, як смерть людини, дорівнює 10 , то для ризику дістаємо такий вираз: ризик = (50 х 10 аварій/рік) (10 смертей/аварій) = 50 000 смертей/рік
З розглянутого прикладу випливає, що кількісно ризик виражається в різних одиницях. У зазначеному прикладі, наприклад, ризик виражається і в кількості смертей за рік у розрахунку на одну людину, і в кількості смертей за рік у розрахунку на 200 млн. людей (усе населення США).
Громадський ризик імовірних збитків майна внаслідок автомобільних аварій:
ризик (збитки/час) = частота (аварій/одиниця часу, х величина (збитки/аварій)
Імовірнісна оцінка 2,5 х 10 смертей / людино-рік означає, що якби усі громадяни США мали рівні шанси загинути в автомобільній аварії, то, при умові відсутності інших можливих причин смерті, все населення країни загинуло б в автомобільних аваріях протягом 4 тис. років.
Це міркування неточне, бо виходить з того, що при кратному повторенні дослідів випадкова подія, ймовірність настання якої дорівнює 1/к, обов'язково відбудеться один раз. У той же час очевидно, що це не так, оскільки з імовірністю, яка дорівнює (1 - 1/к) , ця подія може й не відбутись в жодному з к дослідів. Твердження такого типу справедливі тільки стосовно великих груп об'єктів, у даному випадку - людей. Будь-який водій може сказати: «Все це не має для мене ніякого значення, я можу загинути в автомобільній аварії сьогодні ж». І він при цьому буде правий.
Слід зазначити, що інтерпретація добутої оцінки ризику може призвести до цілком різних наслідків. Наприклад, рівень ризику в 0,1 смертей за рік стосовно залізничних аварій може означати як загибель 100 людей в одній аварії через кожні 1000 років, так і загибель однієї людини через кожні 10 років. У цілому громадськість ігнорує аварії, які супроводжуються загибеллю одиниць, тоді як потенційна можливість аварій, що супроводжуються загибеллю сотень людей, привертає більшу увагу громадськості. Метод дослідження ризику, описаний вище, випливає з класичної концепції повторності подій і їхніх відносних частот. Якщо ж дослідження ризику показує, що атомний реактор, який проектується в процесі експлуатації, створює рівень ризику, що дорівнює 10'6 смертей за рік, то треба ясно розуміти, що в цьому разі про повторність події не може й бути мови, а сама розглянута ситуація належить до категорії «рідкісних подій», до яких не можна застосовувати класичний статистичний імовірнісний підхід.
Методологія дослідження ризику
Попередній аналіз аварій (фаза І)
Метою цієї фази дослідження ризику є визначення системи і виявлення можливості аварій. Єдиним засобом до розуміння причин та умов виникнення аварій є інженерний здоровий глузд і детальний аналіз умов довкілля, самого процесу й необхідного обладнання. Фундаментальними щодо цього є знання з токсичності матеріалів. їх реактивності, стійкості до корозії, вибухонебезпечності та займистості, а також знання нормативних і чинних документів з проблеми забезпечення безпеки.
Досить часто реалізація фази І дослідження ризику важить більше, ніж просто попереднє виявлення елементів системи та подій, які можуть бути причиною аварії. Якщо аналіз, який визначається фазою І дослідження ризику, розширити в напрямі більш формального (кількісного) опису досліджуваної системи з включенням до розгляду послідовності подій, за допомогою яких здійснюється перехід аварії у катастрофу, а також заходів для усунення причин і наслідків катастрофи (як і власне можливі наслідки катастрофи), то таке дослідження є попереднім аналізом аварій. В аерокосмічній промисловості, наприклад, після виявлення аварій їх класифікують відповідно до характеру їхніх наслідків. Типова класифікаційна шкала має такий вигляд:
Клас І - безпечні. До цього класу належать помилки персоналу, недоробки в проекті або порушення в роботі окремих вузлів, які не призводять до істотних і и фушень системи в цілому, людських жертв і пошкодження обладнання.
Клас II - граничні. До цього класу належать помилки персоналу, недоробки в проекті або порушення в роботі окремих вузлів, які хоч і призводять до істотних порушень у роботі системи в цілому, однак піддаються виправленню без людських жертв і завдання істотних збитків обладнанню.
Клас III- критичні. До цього класу належать помилки персоналу, недоробки і» проекті або порушення в роботі окремих вузлів, які порушують роботу системи в цілому, призводять до пошкодження обладнання або до таких аварій, що потребують прийняття негайних дій для врятування людей та обладнання.
Клас IV- катастрофічні. До цього класу належать такі помилки персоналу, недоробки в проекті або порушення в роботі окремих вузлів, які істотно порушують роботу системи в цілому, що призводить до руйнування обладнання, травм і навіть людських жертв.
Загалом, фаза І дослідження ризику - попередній аналіз аварій - являє собою першу спробу визначення стану технічних засобів системи і подій, який може призвести до аварій системи ще на стадії ескізного проектування.
Визначення послідовності негативних подій (дерево подій, дерево помилок) - фаза II
Е. Дж. Хенлі та X. Кумамото, як приклад, розглядають роботу з дослідження безпеки реактора \¥А5НІ400. Результати фази І дослідження безпеки показують, що критичною підсистемою, джерелом потенційної небезпеки радіоактивного викиду в довкілля є система охолодження реактора. Так що фаза IIдослідження ризику починається з простеження можливих послідовностей подій, які настають після розриву трубопроводу. Методика, яка ґрунтується на використанні дерева помилок, забезпечує визначення ланцюжка збоїв обладнання й помилок оператора, що може привести до «головної події», в нашому випадку відсутності холодоагенту в системі охолодження. Використання дерева помилок дає змогу визначати такі показники, як коефіцієнт неготовності та ймовірності відмови технічних систем, які дістають в результаті спеціальних випробувань або узагальнення досвіду експлуатації. Побудова дерева подій здійснюється на основі прямих та зворотних логічних міркувань, тобто індуктивним та дедуктивним методом.
Аналіз можливих наслідків - фаза III
Для розглянутого прикладу дослідження безпеки реактора на цій заключній фазі дослідження ризику необхідно:
1. Визначити кількість токсичних речовин або енергії, що розсіюються у
і навколишнє середовище, для кожного можливого шляху розвитку аварійних подій.
2. Простежити шляхи поширення летальних токсинів, ударної хвилі, фронту
пожеж тощо.
3. Виконати оцінку майнових збитків і шкоди здоров'ю людей в результаті
можливих аварій.
5. Привести класифікацію надзвичайних ситуацій та розробити заходи при землетрусі
Небезпека - центральне поняття БЖД, що об'єднує явища, процеси, об'єкти, здатні в певних умовах наносити збитки здоров'ю людини. Небезпека властива всім системам, які мають енергію, хімічні, біологічні чи інші, несумісні з життєдіяльністю людини компоненти.
Так як небезпека - поняття складне з багатьма ознаками, то таксономування їх виконує важливу роль в організації наукового знання в області безпеки діяльності, дозволяє глибше пізнати її природу небезпеки. (Таксономія - наука про класифікацію і систематизацію складних явищ, понять і об'єктів.)