Контрольная работа: Статистичний аналіз діяльності комерційних банків (умовна вибірка показників по 20 банках)
Статистичні групування, за допомогою яких виявляють взаємозв’язки між ознаками, називають аналітичними[2].
Групування зводиться до утворення оптимального числа груп для кожного конкретного випадку з таким розрахунком, щоб групові середні носили не випадковий характер і щоб групувальна ознака проявила себе повною мірою.
Ранжируваний ряд – ряд, розташований в порядку збільшення або зменшення значень ознаки.
До характеристик центру розподілу відносять середню, моду та медіану.
Середня величина характеризує типовий рівень ознаки в сукупності.
Мода – це найпоширеніше значення ознаки, тобто варіанта, яка в ряду розподілу має найбільшу частоту. В інтервальному ряду за найбільшою частотою визначається модальний інтервал.
Моду обчислюють за наступною формулою:
(1.3)
де і –величина інтервалу; fMo – частота модального інтервалу; fMo-1 – частота інтервалу, що передує модальному; fMo+1 – частота інтервалу, наступного за модальним.
Моду визначають за гістограмою розподілу.
Медіана – це варіанта, яка припадає на середину упорядкованого ряду розподілу і ділить його на дві рівні за обсягом частини. В інтервальному ряду визначається медіанний інтервал.
Положення медіани визначається її номером.
(1.4)
де xMe – нижня границя медіанного інтервалу; і – величина інтервалу; S(Me-1) – накопичена частота інтервалу, що передує медіанному; f – частота медіанного інтервалу.
Середня величина в кожний момент часц чи на визначеному (котроткостро-ково-обмеженому) інтервалі часу характеризується наступними параметрами :
розмах варіації;
середнє лінійне відхилення;
середнє квадратичне відхилення;
дисперсію;
- коефіцієнт варіації.
Для вимірювання та оцінки варіації використовують абсолютні та відносні характеристики. До абсолютних відносяться: варіаційний розмах, середнє лінійне та середнє квадратичне відхилення, дисперсія; відносні характеристики представлені низкою коефіцієнтів варіації.
Варіаційний розмах характеризує діапазон варіації, це різниця між максимальним і мінімальним значеннями ознаки:
(1.5)
Узагальнюючою мірою варіації є середнє відхилення індивідуальних значень ознаки від центру розподілу.
Середнє лінійне відхилення:
(1.6)
Середнє квадратичне відхилення:
(1.7)
Середній квадрат відхилень – дисперсія: