Контрольная работа: Таблица производных Дифференцирование сложных функций

Как известно, большинство функций можно представить в виде какой-то комбинации элементарных функций. Зная, как дифференцируются элементарные функции, можно продифференцировать и их различные комбинации. Поэтому рассмотрим таблицу производных элементарных функций.

1. .

Найдем производную, когда .

Зададим приращение аргументу , что даст . Так как

, а , то

Отсюда и ,

то есть . Если , результат тот же.

2. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда и , то есть .

3. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда и , то есть .

4. .

По определению . Будем дифференцировать как частное:

, то есть .

5. .

По определению . Будем дифференцировать как частное:

, то есть .

6. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда и

,

то есть . Здесь была использована формула для второго замечательного предела.

7. .

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 318
Бесплатно скачать Контрольная работа: Таблица производных Дифференцирование сложных функций