Контрольная работа: Теория вероятности и математическая статистика

Выполнила: Спицина Н. Н.

Специальность: МН - 2


Задание 1

В коробке 12 зеленых, 5 красных, 6 синих карандашей. Из коробки наудачу берут три карандаша. Какова вероятность того, что все они будут синими? Рассмотреть случаи, когда карандаши: а) не возвращают в коробку; б) возвращают в коробку.

Решение:

а) Событие А – все три вынутые без возращения в коробку карандаши синие.

Согласно классическому определению вероятность события А равна:

В коробке 12+5+6=23 карандаша.

Общее число исходов равно:

Благоприятное число способов равно:

Ответ: вероятность того, что все три вынутые без возращения в коробку карандаши синие, равна 0,011.

б) Событие В – все три вынутые с возращением в коробку карандаши синие, то есть три раза будут выниматься 1 синий шар из 23.

Вероятность извлечения одного синего карандаша р = 6/23.

Воспользуемся схемой Бернулли:

q = 1-6/23=7/23

n = 3

m=3

Ответ: вероятность того, что все три вынутые с возращения в коробку карандаши синие, равна 0,018.

Задание 2

Из колоды в 32 карты наугад вынимают 5. Найти вероятность того, что среди них окажется ровно один туз.

Решение:

Событие А – из вынутых наугад 5 карт, ровно один туз.

Согласно классическому определению вероятность события А равна:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 359
Бесплатно скачать Контрольная работа: Теория вероятности и математическая статистика