Контрольная работа: Термостабилизированный логарифмический усилитель

ОУ2 – выходной операционный усилитель;

ОУ3 – операционный усилитель;

ЛЭ – логарифмирующий элемент;

Н – нагреватель;

ДТ – датчик температуры.

Принцип работы заключается в том, что сигнал поступает на вход входного операционного усилителя, логарифмируется, и через выходной операционный усилитель подается на выход схемы.

Особенностью данной схемы, устраняющей температурную зависимость показаний, является оформление в одном корпусе логарифмического элемента, датчика температуры и нагревателя, что приводит к расширению динамического диапазона и улучшению точности логарифмических преобразований.

Принцип температурной стабилизации в данном приборе осуществляется путем измерения температурным датчиком температуры корпуса, усиления тока разности температур операционным усилителем, при превышении температуры окружающей среды над температурой корпуса, и подачи этой разности на нагреватель. Нагреватель, в свою очередь, повышает температуру корпуса до температуры окружающей среды.

2. СИНТЕЗ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ

В логарифмических усилителях в качестве логарифмического элемента обычно используется трансдиодная схема, температурная ошибка передаточной функции которой равна . Для точных измерений в широком диапазоне температуры такая ошибка недопустима.

В данной работе исследована возможность построения термостабилизированого логарифмического усилителя с помощью транзисторных сборок К198НТ5 и К198НТ1, где один транзистор применяется в для измерения температуры кристалла, а другой для нагревания кристалла.

Принципиальная схема устройства показана в приложении 2. Транзистор VT4 расположен на кристалле симметрично относительно дифференциальной пары VT1, VT2 и поэтому используется для нагревания. Транзистор VT5 в диодном включении служит датчиком температуры, напряжение на нем изменяется на мВ/.

Напряжение с VT5 подается на неинвертирующий вход DA3, на второй вход которого подано опорное напряжение от стабилитрона VD1, через резистивный делитель. Выход DA3 управляет базовым током VT4. Ток коллектора VT4 нагревает кристалл. Резистор и конденсатор в цепи обратной связи DA3 служат для стабилизации системы автоматического регулирования температуры, предотвращая переход в режиме переключения.

Входной сигнал поступает через резистор R1 на инвертирующий вход усилителя DA1 и на логарифмический каскад на транзисторе VT1. Напряжение на эмиттерном переходе логарифмирующего транзистора VT1 определяется входным током:

.(2.1)

Поскольку напряжение на эмиттерном переходе компенсирующего транзистора VT2 определяется аналогичным образом, для потенциала базы VT2:

.(2.2)

Для однотипных транзисторов с одинаковыми обратными токами и температурой переходов множитель , что исключает влияние обратных токов насыщения.

Частотный диапазон логарифмических усилителей зависит от входного тока. Однако для нулевого входного сигнала, когда в цепь включено большое сопротивление нелинейного элемента, на выходе присутствует шумовой сигнал. Для уменьшения уровня шума необходимо ограничивать полосу частот, это достигается включением конденсатора С1 параллельно нелинейному элементу VT1.

Прологарифмированный сигнал с выхода DA1 подается на вход неинвертирующего усилителя DA2, после которого поступает на выход устройства.


3. РАЗРАБОТКА ТОПОЛОГИИ ПЕЧАТНОЙ ПЛАТЫ

Печатная плата представляет собой изоляционное основание, на котором имеется совокупность печатных проводников, контактных площадок или переходов.

Разработка топологии печатной платы начинается с рационального размещения элементов на плате.

Размещение радиоэлементов и интегральных микросхем предшествует трассировке печатных связей и во многом определяет эффективность трассировки.

Трассировка заключается в нахождении приемлемого компромисса с учетом схемотехнических требований (минимизация помех), конструкторских и технологических требований (минимизация изгибов трасс, перемычек из объемного провода). При увеличении числа слоев, трассировка упрощается, но стоимость платы растет. При малом числе слоев плата дешевле, но увеличивается сложность трассировки без перемычек, которые увеличивают стоимость сборки и уменьшают надежность платы. В печатной плате при пересечении проводников получается электрический контакт. Если он не нужен, необходимо изменять линию проведения одного из проводников, либо один из проводников выполнять на другой стороне платы. Длина проводников должна быть минимальной. Рисунок проводников должен наилучшим способом использовать отведенную для него площадь. Трассировка осуществляется вручную или с помощью САПР.

Основной метод размещения радиоэлементов – плоский многорядный. Задача компоновки заключается в том, что с одной стороны необходимо разместить элементы как можно более плотно, а с другой стороны - обеспечить наилучшие условия для трассировки, электромагнитной и тепловой совместимости, автоматизации сборки, монтажа и контроля.

Размещение элементов подчиняется следующим критериям:

– Максимально возможная плотность упаковки, но не ухудшающая доступ к элементам при наладке и ремонте прибора;

– Соединительные дорожки должны быть как можно короткими во избежание потерь;

– Крепежные отверстия располагаются в углах платы;

К-во Просмотров: 219
Бесплатно скачать Контрольная работа: Термостабилизированный логарифмический усилитель