Контрольная работа: Точные методы численного решения систем линейных алгебраических уравнений
и
Отсюда искомый вектор x может быть вычислен из уравнений и .
Так как матрицы B и C – треугольные, то системы легко решаются:
и
Из этих двух формул видно, что числа yi выгодно вычислять вместе с коэффициентами cij . Этот метод получил название схемы Халецкого . В схеме применяется обычный контроль с помощью сумм. Если матрица A – симметрическая aij =aji , то
Пример. Решить систему
Решение.
В первый раздел таблицы впишем матрицу коэффициентов системы, ее свободные члены и контрольные суммы. Далее так как , то первый столбец из раздела 1 переносится в первый столбец раздела II. Чтобы получить первую строку раздела II, делим все элементы первой строки раздела I на элемент , в нашем случае на 3.
Имеем:
;
;
;
;
.
Переходим к заполнению второго столбца раздела II, начиная со второй строки. Пользуясь формулами, определяем :
;
;
.
Далее определяя по формулам, заполняем вторую сетку для раздела II:
Затем переходим к третьему столбцу, вычисляя его элементы и по формулам и т.д., пока не будет заполнена вся таблица раздела II. Таким образом, заполнение раздела II происходит способом “елочки”: столбец - строка, столбец - строка и т.д.
В разделе Ш, пользуясь формулами, определяем и .
Текущий контроль осуществляется с помощью столбца ∑, над которым производятся те же действия, что и над столбцом свободных членов.
К-во Просмотров: 293
Бесплатно скачать Контрольная работа: Точные методы численного решения систем линейных алгебраических уравнений
|