Контрольная работа: Точные методы численного решения систем линейных алгебраических уравнений
Министерство науки и образования Украины
Сумской государственный университет
Механико-математический факультет
Кафедра информатики
“Точные методы численного решения систем линейных алгебраических уравнений”
Сумы 2006
Содержание
Постановка задачи
1. Введение
2. Точные методы решения СЛАУ
3. Практическая реализация метода Халецкого
3.1 Программа на языке Pascal
3.2 Решение в Excel
Заключение
Литература
Приложение
Постановка задачи
Решить систему линейных алгебраических уравнений, используя точный метод численного решения (схему Халецкого).
1. Введение
Существует несколько способов решения таких систем, которые в основном делятся на два типа: 1) точные методы , представляющие собой конечные алгоритмы для вычисления корней системы, 2) итерационные методы , позволяющие получать корни системы с заданной точностью путем сходящихся бесконечных процессов.
Для того чтобы система линейных алгебраических уравнений имела решение, необходимо и достаточно, чтобы ранг основной матрицы был равен рангу расширенной матрицы. Если ранг основной матрицы равен рангу расширенной матрицы и равен числу неизвестных, то система имеет единственное решение. Если ранг основной матрицы равен рангу расширенной матрицы, но меньший числа неизвестных, то система имеет бесконечно решений.
Пример системы линейных уравнений:
Или в матричном виде: ,
где матрица коэффициентов системы;
- вектор неизвестных; - вектор свободных членов.
2. Точные методы решения СЛАУ
Метод главных элементов.
Пусть дана система линейных алгебраических уравнений. Рассмотрим расширенную матрицу, состоящую из коэффициентов системы a[i,j] и свободных членов b[i]. Метод главных элементов - это обобщение метода исключения переменных (метода Гаусса). Обозначим матрицу, состоящую из коэффициентов при неизвестных и столбца свободных членов исходной системы за M.
Выбираем наибольший по модулю элемент, не принадлежащий столбцу свободных членов. Пусть это будет . Этот элемент называется главным элементом, а строка, в которой он находится, называется главной строкой.
Вычисляются множители:
Далее производим следующие преобразования: к каждой неглавной строке прибавим главную строку, умноженную на соответствующий множитель для этой строки. В результате мы получим матрицу, у которой q-й столбец состоит из нулей. Отбросим этот столбец и главную p-ю строку, получим новую матрицу с меньшим на единицу числом строк и столбцов. Над матрицей повторяем те же операции, после чего получаем матрицу и т.д. Таким образом, мы построим последовательность матриц
--> ЧИТАТЬ ПОЛНОСТЬЮ <--