Контрольная работа: Управление финансовыми рисками на основе вероятностных методов анализа
где σ2 – дисперсия;
Ri – конкретное значение возможных вариантов ожидаемого дохода по рассматриваемой финансовой операции;
- среднее ожидаемое значение дохода по рассматриваемой финансовой операции;
Рi – возможная частота (вероятность) получения отдельных вариантов ожидаемого дохода по финансовой операции;
n – число наблюдений.
Дисперсия не даёт полной картины линейных уклонений ΔX = X – , более наглядных для оценивания рисков. Тем не менее, задание дисперсии позволяет установить связь между линейным и квадратичным отклонениями с помощью известного неравенства Чебышева.
Вероятность того, что случайная величина X отклоняется от своего математического ожидания больше, чем на заданный допуск ε > 0, не превосходит её дисперсии, делённой на ε2 , т.е.
Отсюда видно, что незначительному риску по дисперсионному отклонению соответствует малый риск по линейным отклонения [6, стр. 106]: точки Х с большой вероятностью будут располагаться внутри ε – окрестности ожидаемого значения .
в) Среднеквадратическое (стандартное) отклонение . Этот показатель является одним из наиболее распространенных при оценке уровня индивидуального финансового риска, так же как и дисперсия определяющий степень абсолютной колеблемости и построенный на её основе. Он рассчитывается по следующей формуле [2, стр. 105]:
где σ – среднеквадратическое (стандартное) отклонение [2, стр. 106]. Среднеквадратическое отклонение σ является именованной величиной и указывается в тех же единицах, в каких измеряется варьирующий признак [6, стр. 105]. Как известно, среднеквадратическое отклонение имеет то неоспоримое достоинство, что при близости наблюдаемого распределения (например, распределении дохода от инвестиций) к нормальному, что, строго говоря, должно быть статистически проверено, этот параметр может быть использован для определения границ, в которых с заданной вероятностью следует ожидать значение случайной переменной. Так, например, с вероятностью 68,3% можно утверждать, что значение случайной переменной х (в нашем случае доход) находится в границах , а с вероятностью 95,4% - в пределах , и т.д. [5, стр. 170]. Сказанное иллюстрируется на графике 1.
График №1
Соотношение площади под кривой нормального распределения в зависимости от расстояния от средней арифметической
Итак, будем считать, что риском операции называется число σ – среднеквадратическое отклонение управляемого фактора (например, дохода) Х операции, которое обозначим r = σ .
Если, например, под Х понимать случайный доход Q , то Q представляет собой средний ожидаемый доход, или эффективность, а среднеквадратическое отклонение σQ является оценкой рискованности, риском и обозначается r Q .
г) Коэффициент вариации . Он позволяет определить уровень риска, если показатели среднего ожидаемого дохода от осуществления финансовых операций различаются между собой. Расчёт коэффициента вариации осуществляется по следующей формуле:
где CV – коэффициент вариации [2, стр. 108].
Коэффициент вариации V – безразмерная величина. С его помощью можно сравнивать даже колеблемость признаков, выраженных в разных единицах измерения. Коэффициент вариации изменяется от 0% до 100%. Чем больше коэффициент, тем сильнее колеблемость. Установлена следующая качественная оценка различных значений коэффициента вариации: до 10% - слабая колеблемость, 10-25% - умеренная колеблемость, свыше 25% - высокая колеблемость [6, стр. 106]. Пример расчёта показан в Приложении I.
д) Бета-коэффициент (или бета) . Он позволяет оценить индивидуальный или портфельный систематический финансовый риск по отношению к уровню риска финансового рынка в целом. Этот показатель используется обычно для оценки рисков инвестирования в отдельные ценные бумаги. Расчёт этого показателя осуществляется по формуле:
где β – бета-коэффициент;
К – степень корреляции между уровнем доходности по индивидуальному виду ценных бумаг (или по их портфелю) и средним уровнем доходности данной группы фондовых инструментов по рынку в целом [2, стр. 109];
σИ – среднеквадратическое отклонение доходности по индивидуальному виду ценных бумаг (или по их портфелю в целом);
σр – среднеквадратическое отклонение доходности по фондовому рынку в целом.
Уровень финансового риска отдельных ценных бумаг определяется на основе следующих значений бета-коэффициентов:
β = 1 – средний уровень;