Контрольная работа: Вертикальные камеры паропрогрева
Как показали исследования, ускоряющее действие повышения температуры на нарастание прочности бетона неодинаково для различных температурных интервалов. Следовательно, величина температуры пропаривания также влияет на нарастание прочности бетона. К тому же цементы различного минералогического состава ведут себя в процессе твердения при различных температурах по-разному. Так, например, при повышении температуры пропаривания значительно возрастает интенсивность твердения смешанных цементов, содержащих кремнеземистые добавки, но степень интенсивности понижается по мере увеличения активности чистых портландцементов.
Установлено, что независимо от состава цемента и бетона прочность бетона при пропаривании увеличивается лишь до определенного времени. При этом интенсивность нарастания прочности не пропорциональна продолжительности пропаривания при максимально принятой температуре.
При последующем твердении в нормальных условиях прочность пропаренных растворов и бетонов возрастает. При этом 28-суточная прочность раствора изменяется также по волнообразной линии в зависимости от продолжительности пропаривания. Характерно, что образцы, имевшие более высокую прочность сразу после пропаривания, характеризовались более высокой прочностью и при последующем хранении (в возрасте 28 суток).
Нарастание прочности и последующее ее понижение в процессе пропаривания при 80°С наступают в более поздние сроки, а достигаемая при этом максимальная прочность выше, чем при 100° С. При предварительном выдерживании бетона до пропаривания прочность нарастает более плавно и в течение более длительного времени. При этом чем продолжительнее предварительное выдерживание, тем позднее наступает первый спад прочности. Величина спада прочности для бетона при длительном пропаривании имеет меньшее значение, чем для образцов из цементного теста и раствора. В дальнейшем характер изменения прочности у них одинаков. Необходимо отметить, что максимальная прочность, а также начало первого спада прочности в значительной мере зависят не только от времени предварительного выдерживания, но и от скорости подъема температуры, состава цемента и бетона и могут смещаться как по величине, так и по времени. По мере повышения содержания в цементе трехкальциевого алюмината и ускорения подъема температуры, а также при использовании жестких бетонных смесей с низким значением водоцементного отношения первый сброс прочности происходит быстрее, а периоды спада и нарастания прочности выражены более резко, чем при использовании пластичных бетонных смесей с большим значением В/Ц.
Практический интерес представляет максимальная прочность, получаемая в начальный период пропаривания, т.е. до первого спада. Исследования показали, что в производственных условиях следует внимательно подходить к назначению продолжительности изотермического прогрева, особенно при температурах выше 80°С, так как вместо ожидаемого роста прочности бетона возможно ее понижение. Волнообразное изменение прочности при длительном пропаривании также представляет интерес не только практический, но и теоретический.
Из результатов исследований видно, что изменение прочности образцов при различной продолжительности пропаривания не находится в прямой зависимости от степени гидратации цемента. Об увеличении степени гидратации цемента можно судить по тому, что удельный вес цементного камня уменьшается, а количество выделяющегося гидрата окиси кальция, а также связанной воды непрерывно увеличивается.
Изменение прочности образцов зависит от скорости протекания происходящих в них процессов перекристаллизации, причем фазовый состав цементирующего вещества может иметь в этом случае второстепенное значение. Изменение прочности в данном случае, видимо, можно объяснить тем, что в первые часы пропаривания при 80°С, и особенно при 100С, процесс гидратации протекает очень интенсивно и новообразования возникают в виде чрезвычайно мелкозернистой массы, образуя кристаллический сросток определенной прочности. С увеличением длительности пропаривания сначала за счет роста кристаллов уплотняется и упрочняется первичный сросток, а затем вследствие непрерывно идущей гидратации будут возникать в нем внутренние напряжения, нарушающие целостность сростка и снижающие прочность цементного камня. Вместе с тем продолжающийся процесс гидратации приводит к самозалечиванию образовавшихся трещин и дефектов цементного камня вновь образующимися продуктами гидратации и начинается новый этап в увеличении прочности. Кроме упомянутых процессов идет также перекристаллизация, связанная с укрупнением новообразований и изменением фазового состава новообразований вследствие перехода нестабильных соединений в более стабильные.
Следовательно, прочность цементного камня, определяемая обычными методами, свидетельствует о преобладании структурообразующего или деструктивного процесса на определенном этапе твердения. При этом периоды сброса прочности являются не случайным, а вполне закономерным явлением. Задача же технологов состоит в том, чтобы обеспечить получение максимальной прочности бетона при коротком режиме пропаривания, пока в цементном камне не возникли и стали преобладающими деструктивные процессы, сопровождающиеся сбросом прочности.
Пропаривание интенсифицирует процессы диффузии и перекристаллизации. Однако после достижения некоторого оптимума, зависящего от минералогического состава цемента, увеличение продолжительности пропаривания приводит к консервации указанных процессов. Приращение прочности при этом весьма незначительно.
1.4 Период остывания изделий в камере
За периодом изотермического прогрева следует период понижения температуры в камере. Продолжительность его, так же как и остальных, может быть различной.
На многих заводах сборного железобетона после окончания изотермического выдерживания прекращается подача пара в камеру, и изделие выдерживается в течение 2-3 ч. При этом скорость понижения температуры зависит от степени герметизации камеры и подчас составляет 2–5°С в 1 ч. Следовательно, за 2– 3 ч температура в камере понижается всего на 5–10°С и в случае пропаривания при 80° С. составляет 75–70°С. Далее крышку камеры открывают, и изделие некоторое время выдерживают в теплой камере, потом извлекают из нее и распалубливают. Такой режим охлаждения характерен для агрегатно-поточной схемы производства при пропаривании изделий в вертикальных камерах. Отсюда следует, что охлаждение изделий в основном протекает произвольно и зависит от степени герметизации камеры, а также от температуры в цехе. Для охлаждения изделий по заданному режиму необходим отсос пара и принудительная вентиляция камер.
В период охлаждения бетона после изотермического прогрева в нем происходят следующие процессы. Вследствие того что изделие имеет температуру большую, чем среда камеры, из бетона начинает испаряться вода, поверхность его высыхает и становится светлее. Кроме того, вследствие разности температур в изделии возникают температурные перепады, которые приводят к образованию напряжений. При этом чем массивнее изделие и чем быстрее оно охлаждается, тем, естественно, больше температурные напряжения, которые могут привести к образованию трещин.
Допустимая скорость понижения температуры зависит также и от прочности бетона, полученной к концу изотермического прогрева изделий. Температурные перепады приводят к образованию растягивающих напряжений. Поэтому чем выше прочность бетона, тем большие напряжения он может воспринять без разрушения.
В тех случаях, когда предъявляются повышенные требования к водонепроницаемости и морозостойкости бетона, целесообразно охлаждать изделия путем орошения их водой с постепенным понижением ее температуры до температуры окружающей среды.
Существенно влияют на появление температурных трещин при охлаждении сквозняки. В закрытом помещении без сквозняков температурный перепад 60–70°С может не вызвать образования трещин, в то время как при охлаждении на улице, особенно при ветре, даже при меньшем температурном перепаде возможно их возникновение.
Следовательно, в зависимости от условий последующего остывания величина допустимого температурного перепада должна быть различной.
Если же изделия изготовляют на полигонах, а охлаждаются они на улице, то допустимым следует считать перепад 40°С. Независимо от места, где будут охлаждаться изделия (теплый склад или улица), необходимо, чтобы их со всех сторон омывал более холодный воздух. Одностороннее охлаждение, например, когда изделие находится на теплом полу, а охлаждается сверху, приводит к образованию трещин.
2. Характеристика вертикальной камеры и изделий
Сушильные установки непрерывного действия представляют собой вытянутые (в высоту или в длину в зависимости от удобства размещения в цехе) камеры, внутри которых с помощью конвейеров различных конструкций высушиваемый материал перемещается от загрузочного к разгрузочному концу. Из-за трудности создания надежных конвейерных устройств для транспортировки тяжелых форм и крупных стержней эти сушила применяются только для сушки мелких и средних стержней. Сушила непрерывного действия работают с постоянным во времени тепловым режимом.
Вертикальная камера выполняется в виде башни со стенами рамно-щитовой конструкции. Пространство между внутренним и внешним стальными листами обшивки рам заполняется теплоизоляционным материалом (шлаковой или стеклянной ватой). Внутри сушила движется вертикальный конвейер, состоящий из двух непрерывных роликовых цепей с подвешенными на них этажерками. На полки этажерок укладывают подвергаемые сушке стержни. Количество полок на каждой из этажерок зависит от размера стержней. При массе стержней до 5 кг обычно на этажерке устанавливают по три полки, при сушке более крупных стержней количество полок уменьшается. Изменяя скорость движения конвейера, можно устанавливать различное время пребывания стержней в сушиле в зависимости от их массы. Загрузка стержней производится со стороны восходящей ветви конвейера, разгрузка – с противоположной стороны, причем загрузка и выгрузка обычно механизированы.
Топка сушила находится между двумя ветвями конвейера; размещена выше уровня загрузочного и разгрузочного окон, чтобы предотвратить выбивание горячих дымовых газон. Топливо сжигается в топке, расположенной внутри смесительной камеры, в которой происходит перемешивание выходящих из топки продуктов горения (с температурой 1000–1200° С) с холодным воздухом или отработанными газами. Наружная камера одновременно играет роль тепловой изоляции кладки топки. Приготовленный таким образом сушильный агент выходит из камеры смешения через отверстия в ее своде и поступает в сушильную камеру со стороны восходящей ветви конвейера. Поднявшись в верхнюю часть сушила, дымовые газы огибают перегородку, опускаются в нижнюю часть сушила, откуда дымососом часть их отводится для рециркуляции, а часть поступает в дымовую трубу. Вместо сплошной перегородки часто используются газоотбойные щиты, устанавливаемые над топкой. Меняя угол наклона этих щитов при помощи лебедки, можно регулировать распределение газовых потоков в сушильной камере. Помимо этого, дымовая труба соединена с верхней частью сушильной камеры четырьмя короткими трубопроводами с заслонками на каждом из них. Все эти средства позволяют регулировать работу сушила и подбирать тот режим сушки, который требуется для данных стержней.
Стержни перед выдачей из сушила охлаждаются. Зоной охлаждения служит участок нисходящей ветви конвейера между дымоотборным отверстием и разгрузочным окном. Охлаждение стержней осуществляется воздухом, подсасываемым в сушильную камеру через окно разгрузки.
Отопление может осуществляться любым видом топлива (твердым, жидким или газообразным), сжигание которого осуществляется с помощью топливосжигательных устройств.
3. Номенклатура выпускаемых изделий
Основными изделиями, которые пропариваются в вертикальной камере, являются железобетонные плиты. Свойства железобетона оказывают большое влияние на процесс протекания тепло-влажностной обработки. Исходя из этого, необходимо выявить основные свойства железобетона и его номенклатуру.
камера вертикальный изделие номенклатура
Таблица 2 – Номенклатура железобетонных изделий
Наименование изделий и эскиз | Марка изделия | Габаритные размеры, мм | Объём материала, м3 | ||
длина | ширина | высота | |||
1 | 2 | 3 | 4 | 5 | 6 |
Плиты перекрытий жилых и общественных зданий К-во Просмотров: 263
Бесплатно скачать Контрольная работа: Вертикальные камеры паропрогрева
|