Контрольная работа: Воздействие канцерогенных веществ на организм человека
На рисунке1 представлен весь электромагнитный спектр. Как показано на этой схеме, он включает много видов излучений — от очень длинных волн, возникающих, например, при работе электрогенераторов, до очень коротких, таких, как рентгеновские и космические лучи. Световые волны, воспринимаемые глазом, тоже входят в электромагнитный спектр, но это только малая часть всего диапазона.
Рисунок 1 Полная шкала э/м волн
Влияние излучений на здоровье зависит от длины волны. Последствия, которые чаще всего имеют в виду, говоря об эффектах облучения (радиационное поражение и различные формы рака) вызываются только более короткими волнами. Эти типы излучений известны как ионизирующая радиация. В отличие от этого более длинные волны — от ближнего ультрафиолета (УФ) до радиоволн и далее — называют неионизирующим излучением; его влияние на здоровье совершенно иное.
Микроволны находятся в этой неионизирующей области, тогда как рентгеновские лучи, гамма-лучи и космические лучи — это ионизирующие излучения. Мы рассмотрим здесь влияние этих двух категорий излучения на организм. Воздействие ультрафиолетовых лучей — главным образом их способность вызывать рак кожи.
3.2 Биологическое действие неионизирующего излучения
Неионизирующее излучение может усиливать тепловое движение молекул в живой ткани. Это приводит к повышению температуры ткани и может вызывать вредные последствия, такие, как ожоги и катаракты, а также аномалии развития утробного плода. Не исключена также возможность разрушения сложных биологических структур, например клеточных мембран. Для нормального функционирования таких структур необходимо упорядоченное расположение молекул. Таким образом, возможны последствия более глубокие, чем простое повышение температуры, хотя экспериментальных свидетельств этого пока недостаточно.
Большая часть опытных данных по неионизирующим излучениям относится к радиочастотному диапазону. Эти данные показывают, что дозы выше 100 милливатт (мВт) на 1 см2 вызывают прямое тепловое повреждение, а также развитие катаракты в глазу. При дозах от 10 до 100 мВт-см2 наблюдались изменения, обусловленные термическим стрессом, включая врожденные аномалии у потомков. При 1—10 мВт-см-2 отмечались изменения в иммунной системе и гематоэнцефалическом барьере. В диапазоне от 100 мкВт-см-2 до 1 мВт-см-2 не было достоверно установлено почти никаких последствий.
По-видимому, при воздействии неионизирующего излучения существенное значение имеют лишь ближайшие последствия, такие, как перегрев тканей (хотя имеются новые, пока неполные, данные о том, что рабочие, подвергающиеся действию микроволн, и люди, живущие очень близко к высоковольтным линиям электропередачи, могут быть больше подвержены заболеванию раком). В московском посольстве США концентрация энергии микроволн не превышала максимума в 18 микроватт на 1 см2, и там не удалось выявить никакого прямого влияния их на персонал.
3.3 Микроволны и радиочастотное излучение
Этому отсутствию видимых последствий при низких уровнях микроволнового облучения нужно, однако, противопоставить тот факт, что рост использования микроволн составляет, по меньшей мере, 15% в год. Помимо применения в микроволновых печах они используются в радарах и как средство передачи сигналов в телевидении и в телефонной и телеграфной связи. В США нет стандарта на дозы неионизирующих излучений, хотя закон об охране труда рекомендует, чтобы рабочие не подвергались воздействию выше 10 мВт-см~2. В бывшем Советском Союзе для населения принят предел в 1 мкВт-см-2.
Промышленные рабочие, участвующие в процессах нагрева, сушки и изготовления слоистого пластика, могут подвергаться некоторому риску, так же как и специалисты, работающие в радиовещательных, радарных и релейных башнях, или некоторые военнослужащие. Рабочие подавали иски на компенсацию с обвинением в том, что микроволны способствовали нетрудоспособности, и, по меньшей мере, в одном случае было принято решение в пользу рабочего.
Тем временем с увеличением числа источников микроволнового излучения возрастала и тревога в отношении его воздействия на население. Сооружение микроволновой телевизионной передающей антенны на крыше Нью-йоркского центра мировой торговли было остановлено, когда инженеры осознали, что это подвергнет какую-то часть служащих этого учреждения, а также туристов на крыше здания облучению порядка 360 мкВтсм-2. Береговой охране не разрешили соорудить микроволновую передающую башню в системе управления движением судов в гавани Нью-Йорка из-за сомнений общественности в безопасности микроволн.
Правительственные учреждения и группы заинтересованной общественности хотели бы установления стандартов на различные формы неионизирующей радиации. Многие промышленные группы желали бы иметь федеральные стандарты как для ориентировки при конструировании аппаратуры, так и для того, чтобы предотвратить разнобой в местных муниципальных постановлениях.
3.4 Высоковольтные линии электропередачи
Еще один предмет беспокойства наряду с микроволнами и радиочастотным излучением — это излучения от высоковольтных линий электропередачи. Такие линии предназначены для переноса больших количеств энергии от электростанций к крупным населенным центрам. Наиболее мощные из действующих линий рассчитаны на напряжение в 765 000 вольт (765 кВ); одна из них способна передавать достаточно энергии для Бостона и Балтимора вместе взятых. На будущее планируются линии напряжением до 2200 кВ. Линии таких мощностей создают вокруг себя электрические и магнитные поля.
В обычной кухне электроприборы могут создавать электрическое поле напряженностью около 3 В*м, Прямо под линией электропередачи на 765 кВ поле на уровне земли достигает примерно 10 кВ-м^-1. Однако если отойти на 150 м от линии, оно уменьшится до 0,1 кВм-1. Таким образом, возможные проблемы касаются в основном воздействий в зоне непосредственно вокруг линий или под ними. Эти воздействия включают электрический шок, биологические эффекты, вызываемые электрическими и магнитными полями, и влияние коронного разряда электрический шок. Высоковольтные линии вызывают электрический шок у людей или животных, передвигающихся под ними. На расстоянии до нескольких метров вокруг самой линии может происходить пробой воздуха между линией и проводящим объектом, открывающий путь для опасного тока. Электролинии должны подвешиваться достаточно высоко, так, чтобы никакой объект (например, судно с высокой мачтой) не мог попасть в зону возможного разряда.
Однако и электрическое поле вокруг линии тоже может создавать угрозу шока. Причина в том, что объекты в электрическом поле собирают электрический ток. Например, большой трактор под линией передачи на 765 кВ может стянуть до 4—5 миллиампер. Такой ток еще не представляет опасности, пока кто-нибудь, будучи заземлен (например, стоя на влажной почве), не дотронется до трактора и не позволит тем самым току пройти через свое тело в почву. Шок в этом примере, вероятно, окажется на верхнем пределе шока, который будет очень болезненным, но в остальном еще безвредным для ребенка. Однако в случае линии более высокого напряжения возможны и более серьезные последствия действия электрического поля. Помимо опасности шока электрические поля могут оказывать и другое действие на живой организм. Наружное поле линии электропередачи вызывает образование внутреннего электрического поля в живой ткани. В теле человека плотность внутреннего тока, создаваемого наружным электрическим полем в 10 кВ-м-1, все еще в 10—100 раз меньше плотности тока, которая, воздействуя на мембрану мышечной или нервной клетки, вызовет ее возбуждение. Может ли электрический ток столь малой плотности вызывать в клетках иные, более тонкие эффекты — этот вопрос оживленно дискутируется. Пока ничего такого не выявлено, но эксперименты продолжаются.
На поверхности тела или у верхушки остроконечного листа местное поле может быть гораздо более сильным, чем внутреннее поле. Это создает у людей ощущение покалывания, создаваемое вибрацией волосков на коже. Кроме того, у заостренных листьев кончик может оказаться обожженным (круглые листья не повреждаются). Все это, по-видимому, не приводит к каким-либо вредным результатам для организма в целом, хотя некоторые люди находят покалывание неприятным. Российские авторы сообщали и о других последствиях, таких, как чувство усталости, но их эксперименты не удалось воспроизвести в США.
Электрическое поле под линией электропередачи на 765 кВ определенно может влиять на некоторые виды сердечной аритмии. Хотя в сердце имеется надежный механизм защиты, фермерам или рабочим с аритмией, которым приходится проводить время под высоковольтными линиями, следует посоветоваться с врачом. Люди, проезжающие под такой линией на машине, ничем не рискуют, так как металлический кузов автомобиля защитит их от наружного электрического поля.
Влияние магнитного поля . У поверхности земли под линией электропередачи на 765 кВ напряженность магнитного поля составляет около 0,56 Гс, но она быстро снижается до 0,016 Гс на расстоянии 150 м от линии. Перелетные птицы, по-видимому, способны обнаруживать магнитные поля в 0,4 Гс, создаваемые большими антеннами, что могло бы затруднять им ориентацию; однако птицы, видимо, способны использовать другие ориентиры (например, положение солнца и звезд). Фактически никакой дезорганизации птичьих перелетов из-за магнитных полей не наблюдалось.
Не было установлено и других вредных биологических влияний магнитных полей при уровнях, существующих под ныне действующими линиями электропередачи.
Влияние коронных разрядов . Коронные разряды, происходящие главным образом при плохой погоде — это пробои воздуха, непосредственно окружающего линию электропередачи. Больше всего они заметны по производимому шуму — потрескиванию или шипению. Хотя этот шум намного ниже уровней, способных повредить слух, он может раздражать. Коронные разряды могут также создавать помехи для радио- и телевизионных сигналов, что может быть серьезной проблемой в зонах неуверенного приема. Кроме того, возможно образование озона и окислов азота; однако их уровни по сравнению с другими источниками слишком низки, чтобы вызывать беспокойство.
Виды на будущее. Итак, не было доказано, что электрические и магнитные поля, создающиеся под высоковольтными линиями электропередачи, вызывают серьезные биологические последствия. Однако если вольтаж линий будет повышен, могут возникнуть проблемы, особенно с электрическими шоками. Электрическим компаниям придется тогда вводить приспособления для защиты людей, растений и животных от более сильных электрических полей.
4. Радиация: рентгеновские лучи, гамма-лучи и частицы
4.1 Виды ионизирующих излучений
Взглянув снова на спектр электромагнитных волн (рисунок 1), мы увидим, что его коротковолновый конец состоит из рентгеновских лучей, гамма-лучей и космических лучей. Эти лучи обладают достаточной энергией, чтобы освободить электрон из атома, частью которого он был. В результате образуются ионы (почему эти виды излучений и называют ионизирующими). Воздействием этих ионов и обусловлены дальнейшие изменения в облученных клетках. Некоторые типы частиц, подобные испускаемым радиоактивными материалами, тоже вызывают образование ионов.
Распад ядер нестабильных элементов порождает ионизирующие частицы и ионизирующее излучение. Нестабильные элементы, которые мы называем радиоактивными, испускают альфа-частицы, бета-частицы и гамма-лучи. Гамма-лучи обладают наибольшей проникающей способностью из всех продуктов радиоактивного распада. Они могут проходить сквозь несколько сантиметров свинца без существенного ослабления своей энергии. Те, кто работает вблизи веществ, испускающих гамма - радиацию, должны соблюдать максимальную осторожность, чтобы ограничить ее воздействие.
Подобно гамма-лучам, рентгеновские лучи тоже в высокой степени проникающие. Нужны несколько сантиментов свинца, чтобы их задержать. Космические лучи, состоящие из частиц и электромагнитного излучения, непрерывно бомбардируют нас из мирового пространства. Хотя часть космических лучей может быть задержана несколькими слоями свинца, другая их часть проникает даже в глубочайшие шахты. Интенсивность космических лучей возрастает на больших высотах настолько, что космонавтов, возможно, придется приравнять к людям, работающим с ионизирующей радиацией. Интенсивность космических лучей возрастает также с приближением к полярным широтам.