Контрольная работа: Воздействие канцерогенных веществ на организм человека
воздействующих на человека
Люди могут подвергаться воздействию рентгеновских лучей, космических лучей и радиации от распада радиоактивных элементов. Мы измеряем получаемую дозу облучения чаще всего в ремах и миллиремах1 — единицах, отражающих как интенсивность излучения, так и его действие на ткани человека. Пределы допустимого облучения тоже устанавливаются в ремах и миллиремах. Если мы исключим излучения от медицинских рентгеновских аппаратов и других источников, созданных человеком, то получим то, что называют естественным радиационным фоном. Это та доза, которую мы получали бы, если бы не было никаких источников излучения, привнесенных нами самими.
Естественный фон в США чаще всего лежит в пределах от 100 до 150 миллирем в год. В Лидвилле (шт. Колорадо), расположенном на высоте 3,3 км над уровнем моря, отмечен один из наивысших уровней фонового излучения—160 миллирем — благодаря большей интенсивности космических лучей, достигающих города. Радиоактивные элементы в земной коре, такие, как калий-40 и радий, тоже вносят свой вклад в радиационный фон.
Рентгеновские обследования, назначаемые врачами,— это обычный источник получаемых нами доз ионизирующей радиации. Хотя такую экспозицию оценивают в 90 миллирем в год, это лишь средняя цифра. Многие люди получают гораздо большие дозы, другие же не получают никаких. Ежегодное просвечивание грудной клетки на туберкулез в настоящее время не считается хорошей практикой. Более старое рентгеновское оборудование, все еще используемое во многих местах, создает дозы намного выше, чем это необходимо.
В период, когда атомные и водородные бомбы испытывались в атмосфере, радиоактивные элементы рассеивались вокруг земного шара в виде облаков частиц. Дождевые капли поглощали эти частицы, и происходило выпадение радиоактивных осадков. В районах, очень близких к атомным взрывам, например на островах в Тихом океане, оно было вначале достаточным для того, чтобы оставить измеримые уровни радиоактивности в почве, но в дальнейшем радиоактивность осадков становилась уже незначительной по сравнению с фоновым излучением.
4.3 Атомная энергетика и риск облучения
Воздействие излучений от радиоактивных элементов — это предмет беспокойства, возросшего с появлением атомной энергетики. В первые 15 лет существования атомных электростанций здесь допускались систематические выбросы малых количеств излучающих материалов. Более старые станции должны были работать так, чтобы ни один человек в окрестности не получал более 500 миллирем в год, а средняя доза для людей на большем удалении от станции не должна была превышать 170 миллирем в год. Такие нормы отражали действовавшие в то время стандарты на допустимые дозы для всего населения. В середине семидесятых годов Комиссия по атомной энергии подверглась критике за эти стандарты и прореагировала ужесточением предельных норм эмиссии радиоактивных элементов атомными станциями. Наибольшая допустимая годовая доза была уменьшена с 500 миллирем до 5 миллирем, а средняя доза до величины меньше 1% от природного фонового излучения, т.е. до 1 миллирема.
Ясно, что при этих новых стандартах нормальная работа атомных электростанций перестала вызывать особое беспокойство, однако излучение остается проблемой. Один из оставшихся опасных источников излучения связан с установками для регенерации атомного топлив. Другой источник — это добытая и отбракованная урановая руда. Однако еще большую тревогу вызывает возможность того, что террористы или воюющие страны могут захватить отработанное атомное топливо или расщепляющиеся материалы и создать ядерное оружие —атомную бомбу из материала, подобного плутонию, или устройство, разбрасывающее смертоносное содержимое отработанного топливного стержня. Взрыв такого оружия мог бы привести к массовому поражению людей радиацией.
Наконец, следует упомянуть о том, что ряд радиоактивных элементов может концентрироваться в пищевых цепях (биологическое накопление). Примером служит фосфор-32. В реке Колумбия ниже Ханфордской атомной электростанции концентрация его в сигах была в 5000 раз выше, чем в воде, в ушастых окунях и краппи в 20 000—30 000 раз выше, а в нитчатых водорослях в 100000 раз выше. Другие примеры радиоактивных элементов, накапливаемых живыми организмами,— цинк-65, железо-59 и иод-131. Население может облучаться ими при употреблении некоторых продуктов. Рыба может содержать фосфор-32, устрицы и другие моллюски — цинк-65, а молоко — иод-131. К сожалению, пути этих элементов в пищевых цепях не настолько хорошо изучены, чтобы можно было оценить связанную с ними опасность.
4.4 Биологическое действие ионизирующего излучения
Последствия облучения для здоровья людей, живущих в настоящее время, можно разделить на две категории. Острые симптомы, возникающие после интенсивной кратковременной экспозиции, проявляются на протяжении нескольких дней или недель. Такие случаи очень мало вероятны, за исключением атомной войны или аварийных ситуаций. Последствия длительного облучения в малых дозах вряд ли могут проявиться скоро — для этого нужны годы. Такого рода поздние симптомы нельзя отличить от обычных болезней старения, особенно это относится к раку. Мы знаем, что ионизирующее излучение может вызвать рак молочных желез и щитовидной железы, лейкоз, рак легких, желудочно-кишечного тракта и костей. Эти болезни наблюдались у людей, получивших дозы в 100 рем и больше при несчастных случаях или такой катастрофе, как взрывы атомных бомб в Нагасаки и Хиросиме.
Хотя радиация может вызвать рак, заболевший обычно не может указать на облучение как на его причину. Население и рабочие, как правило, рискуют получить лишь очень малую дозу—от 0,1 до 5 рем. Те формы рака, которые вызываются облучением, могут быть индуцированы иными агентами. Поэтому для того, чтобы с помощью обычных статистических методов установить, вызваны ли определенные формы рака этими низкими уровнями облучения, потребовалось бы обследовать очень большое число людей — порядка сотен тысяч. Обычно невозможно найти столько подвергшихся облучению лиц или столько случаев определенной формы рака, чтобы эпидемиологическое исследование позволило установить связь заболеваний с полученными малыми дозами радиации. Некоторые исследователи обрабатывали имеющуюся информацию более сложными статистическими методами, но большинство других ученых не признают результаты убедительными.
Для оценки возможного действия малых доз используются также данные о последствиях облучения в дозах больше 100 рем. Среди специалистов идет горячий спор: как экстраполировать данные о действии больших доз, чтобы предсказать действие меньших доз, и имеется ли порог, ниже которого уже нет никакой опасности? Это аналогично спорам о действии низких доз химических канцерогенов. Большинство ученых согласно в том, что нет никаких доказательств существования порогового уровня, особенно для некоторых типов излучений, например для альфа-частиц.
Можно полагать, что помимо рака излучение вызывает также генетические повреждения, т.е. мутации, которые могут быть переданы будущим поколениям. Результаты экспериментов на животных и культурах клеток привели ученых к убеждению, что это весьма вероятно. Однако, хотя у выживших после атомной бомбардировки и у их детей были обнаружены поврежденные хромосомы, существенного увеличения частоты врожденных аномалий не было отмечено. Это, вероятно, обусловлено низкими средними дозами для гонад родителей (50 рем), а также малыми размерами популяции (78 000 детей от родителей, переживших Хиросиму или Нагасаки). По некоторым оценкам, природное фоновое излучение (около 100—150 миллирем) вызывает, вероятно, 0,1—2% всех генетическ?