Контрольная работа: Вычисление пределов функций, производных и интегралов
Следовательно, имеем три промежутка:
Определим знак на каждом промежутке:
при x= -1 y=-4 < 0
при x= 0,5 y=0,125 > 0
при x= 2 y=2 > 0
Тогда: для
, для
Рассмотрим поведение функции на концах промежутков:
4. Найдем промежутки монотонности функции, ее экстремумы.
Найдем производную функции:
при
,
- точки экстремума, они делят область определения функции на три промежутка:
Исследуемая функция в промежутке
– возрастает
– убывает
- возрастает
5. Найдем промежутки выпуклости графика функции, ее точки перегиба.
Найдем вторую производную функции:
при - точка перегиба