Контрольная работа: Вычисление пределов
Определение. Число называется пределом последовательности , если для любого положительно го числа найдется такое натуральное число , что при всех > выполняется неравенство
Пишут:
Графически это выглядит так:
n -
Т.е. элемент находится в - окрестности точки а. При этом последовательности называется сходящейся, в противном случае – расходящейся.
Основные свойства сходящихся последовательностей
1)Сходящаяся последовательность ограничена.
2)Пусть , , тогда а) б) в)
3)Если и для всех выполняется неравенства , то .
4) Если и последовательность {уn } - ограниченная, то
№1. Найти пределы: | |
|
|
Бесконечно большие и бесконечно малые функции
Определение. Функция называется бесконечно малой при , если
Например: 1) при б. м. ф. т.к. 2) при б. м. ф. т. к