Контрольная работа: Выполнение корреляционного и регрессионного анализа

Контрольная работа

по дисциплине "Эконометрика"

студента гр. ВФ-108

Звягиной Марии Михайловны

Раздел I. Практическая часть

Содержание заданий.

Задание 1

1. По исходным данным выполнить корреляционный анализ:

Таблица 9

Основные показатели работы грузовых автомобилей крупных и средних организаций автомобильного транспорта в 2006 году

Перевезено грузов, тыс. тонн Расходы, млн, руб
Владимирская 594,6 258,3
Брянская 3178,9 656,5
Белгородская 523,8 824,4
Воронежская 2572,3 220,1
Ивановская 308,5 73,8
Костромская 580,5 82,7
Рязанская 203,7 65,4
Смоленская 389,3 86,6
Тульская 225,8 36,5
Ярославская 693,4 279,9

Основной задачей корреляционного анализа является - выявление связи между случайными переменными и оценка её тесноты. Показателем тесноты линейной связи является коэффициент корреляции r .

1.1. Построить корреляционное поле и предложить гипотезу о связи исследуемых факторов

Для трактовки линейной связи между переменной X ("Перевезено грузов") и Y ("Расходы") при помощи встроенных возможностей MicrosoftExcelпостроим поле корреляции заданной выборки наблюдений (диаграмма 1).

корреляционный регрессионный анализ

Характер расположения точек на диаграмме позволяет сделать предварительный вывод о том, что связь между переменными прямая, т.е. увеличение одной из переменных ведет увеличению условной (групповой) средней другой.

Связь между переменными в диапазоне достаточно тесная, однако в диапазоне имеются точки выброса, т.е. точки, находящиеся на достаточно отдаленном расстоянии от общего массива точек. Им соответствуют данные по Брянской, Белгородской и Воронежской областям.

Диаграмма 1.

Сделаем предположения, что:

1. данные по Брянской области являются точкой выброса;

2. данные по Белгородской области являются точкой выброса;

3. данные по Воронежской области являются точкой выброса;

4. данные по Брянской и Белгородской областям являются точками выброса;

5. данные по Брянской и Воронежской областям являются точками выброса;

6. данные по Белгородской и Воронежской областям являются точками выброса

7. данные по Брянской, Белгородской и Воронежской областям являются точками выброса.

1.2. Определить коэффициенты корреляции

Для заданного массива переменных коэффициент корреляции r = 0,454 (рассчитан при помощи функции MicrosoftExcelКОРРЕЛ).

Коэффициент корреляции r > 0, следовательно, корреляционная связь между переменными прямая, что подтверждает предварительный вывод, сделанный в п.1.1.

Коэффициент корреляции r принял значение на отрезке [-1; 1], следовательно, мы можем оценить тесноту связи случайных величин, заданных массивами, при помощи шкалы Чеддока:

Теснота связи Значение коэффициента корреляции при наличии:
прямой связи обратной связи
Слабая 0,1 - 0,3 (-0,1) - (-0,3)
Умеренная 0,3 - 0,5 (-0,3) - (-0,5)
Заметная 0,5 - 0,7 (-0,5) - (-0,7)
Высокая 0,7 - 0,9 (-0,7) - (-0,9)
Весьма высокая 0,9 - 0,99 (-0,9) - (-0,99)

Коэффициент корреляции r принадлежит интервалу (0,3; 0,5), следовательно, связь между переменными умеренная.

Рассчитаем коэффициенты корреляции, исключая данные по субъектам РФ согласно выдвинутым предположениям:

r = 0,116
r = 0,821
r = 0,578
r = 0,511
r = 0,455
r = 0,949
r = 0,824

Анализ полученных коэффициентов показывает, что предположение 5 верно, т.е. данные по Брянской и Белгородской областям являются точками выброса (исключение точек, соответствующих указанным субъектам РФ, из корреляционного поля не повлекло за собой значительного изменения коэффициента корреляции). Все остальные предположения считаем неверными. Кроме того, отмечается значительное увеличение тесноты связи между переменными при исключении из корреляционного поля точек, соответствующих данным по Белгородской и Воронежской областям (предположение 6), и её значительное уменьшение при исключении данных по Брянской области.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 194
Бесплатно скачать Контрольная работа: Выполнение корреляционного и регрессионного анализа