Контрольная работа: Закон природы
Температура при растворении понижается, это означает что тепловой эффект растворения положителен.
Самая удивительная особенность воды – ее способность растворять другие вещества. Способность веществ к растворению зависит от их диэлектрической постоянной. Чем она выше, тем больше способно вещество растворять другие. Так вот, для воды эта величина выше, чем для воздуха или вакуума в 9 раз. Поэтому пресные или чистые воды практически не встречаются в природе. В земной воде всегда что-то растворено. Это могут быть газы, молекулы или ионы химических элементов. Считается, что в водах Мирового океана могут быть растворены все элементы таблицы периодической системы элементов, по крайней мере, на сегодня их обнаружено более 80.
Гидрофильные процессы играют важную роль в поддержании онкотического давления.
Гидрофобные процессы играют важную роль образовании пространственной структуры казеина.
8. Опишите функции клеточных мембран. Что такое «ионный насос»? Охарактеризуйте строение и биологическое значение АТФ, почему АТФ называют основным источником энергии в клетке?
Не останавливаясь подробно на строении мембран, можно лишь подчеркнуть, что, несмотря на существование многочисленных моделей мембран и различия в их некоторых деталях, все они основываются на представлениях о мембране как о жидком бислое определенным образом ориентированных фосфолипидных молекул, в который вмонтированы собранные в сетку-каркас белки. Согласно этой жидкостно-мозаичной гипотезе строения, мембрана состоит из бислоя липидных молекул, которые повернуты друг к другу гидрофобными концами, жестко не закреплены и постоянно меняются местами в пределах одного монослоя или путем перестановки двух липидных молекул из разных монослоев.
В жидкие слои липидов погружены специализированные белковые комплексы, называемые интегральными белками. С внутренней поверхности мембраны к некоторым интегральным белкам прикрепляются периферические белки. Интегральные липопротеиды удерживаются в бислое гидрофобными связями, а периферические гидрофильные белки на внутренней и внешней поверхностях мембран – электростатическими связями, взаимодействуя с гидрофильными головками полярных фосфолипидов. Короткие углеводные цепи присоединены к белкам с внешней стороны плазматической мембраны.
Таким образом, динамические свойства мембраны обусловлены подвижностью ее молекулярной организации. Белки и липиды взаимосвязаны в мембране непостоянно и образуют подвижную, гибкую, временно связанную в единое целое структуру, способную к структурным перестройкам. При этом изменяются, например, взаиморасположение компонентов мембраны, конформация белков, конфигурация липидов. Молекулярные сдвиги и структурные перестройки в молекулах мембранных компонентов оказывают глубокое влияние на все формы функциональной активности биологических мембран.
Основные функции клеточных мембран заключаются в отделении содержимого клеток от внешней среды, в создании внутренней архитектуры клетки, поддержании градиента концентраций и электрохимического градиента, осуществлении транспорта веществ. Это барьерная, транспортная, осмотическая, структурная, энергетическая, биосинтетическая, секреторная, рецепторно-регуляторная и другие функции.
Благодаря барьерной функции мембран, окружающих клетку снаружи или ее отдельные отсеки (компартменты), в клетке и ее органоидах создается гетерогенная физико-химическая среда, и на разных сторонах мембраны происходят разнообразные, часто противоположно направленные биохимические реакции. Наряду с барьерной функцией мембраны осуществляют и трансмембранный перенос ионов и различных метаболитов в ходе пассивного (по химическому и электрохимическому градиентам) или активного транспорта (против электрохимического градиента с затратой энергии).
Осмотическая функция мембран связана с регуляцией водного обмена клетки. Благодаря структурной функции поддерживается основа мембран и упорядоченно располагаются полиферментные комплексы, контактирующие с фосфолипидами. Для этого контакта и сохранения активности ферментов важно, чтобы находящиеся в непрерывном движении липиды находились в жидком агрегатном состоянии. «Затвердевание» липидов, связанное с качественными перестройками в их жирнокислотном составе, приводит к нарушению липидного окружения белков-ферментов, в результате чего их функции нарушаются.
Энергетическая функция мембран определяется аккумуляцией и трансформацией энергии. Наиболее эффективно она осуществляется в мембранах митохондрий и хлоропластов, где синтез АТФ сопряжен с образованием электрохимического мембранного потенциала ионов Н+.
Биосинтетическая функция связана с синтезами различных веществ. Особенно широкий спектр синтезов представлен в мембранах эндоплазматического ретикулума (ЭР). В ЭР происходит синтез мембранных белков и липидов (фосфолипидов, жирных кислот), углеводов, терпеноидов. Участие в секреторных процессах также характерно для мембран. Так, плазмолемма активно взаимодействует с везикулами, производными аппарата Гольджи и ЭР.
Рецепторно-регуляторная функция определяется наличием в мембранах хемо-, фото- и механорецепторов белковой природы, воспринимающих сигналы из внешней и внутренней среды и способствующих возникновению ответных реакций на изменение условий существования. Мембраны клеточных компонентов генетически связаны между собой и способны взаимопревращаться и переходить из одного компартмента в другой. Так, мембраны вакуолей, пластид, митохондрий являются производными мембран ЭР. Последний связан непосредственно с ядерной мембраной и опосредованно (через мембраны аппарата Гольджи) с плазмалеммой.
На основании данных о взаимодействии мембранных компонентов в настоящее время выдвинута концепция эндомембранной системы. Наличие эндомембранной системы, указывающее на существование регуляторных взаимодействий клеточных органелл, обеспечивает системный ответ клетки на изменение условий внутренней и внешней среды.
При кратковременных воздействиях на клетки ионизирующих излучений с высокой проникающей способностью уменьшается разность электростатических потенциалов между сторонами биомембраны, накопленная в результате длительной работы «ионных насосов ». Резко уменьшается число образующихся ионов.
Итак, ионный насос – это механизм воздействия на клетки.
АТФ – это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04%; в скелетных мышцах 0,5%). Молекула АТФ состоит из аденина, рибозы и трех остатков фосфорной кислоты (рис. 12). При гидролизе остатка фосфорной кислоты выделяется энергия:
АТФ + H2 O = АДФ + Н3 РО4 + 40 кДж/моль.
Связь между остатками фосфорной кислоты является макроэргической, при ее расщеплении выделяется примерно в 4 раза больше энергии, чем при расщеплении других связей. Энергия гидролиза АТФ используется клеткой в процессах биосинтеза и деления клетки, при движении, при производстве тепла, при проведении нервных импульсов и т.д. После гидролиза образовавшийся АДФ обычно с помощью белков-цитохромов быстро вновь фосфорилируется с образованием АТФ. АТФ образуется в митохондриях при дыхании, в хлоропластах – при фотосинтезе, а также в некоторых других внутриклеточных процессах. АТФ называют универсальным источником энергии, потому что энергетика клетки основана главным образом на процессах, в которых АТФ либо синтезируется, либо расходуется.
ДНК (дезоксирибонуклеиновая кислота) – это молекула, состоящая из двух спирально закрученных полинуклеотидных цепей. ДНК образует правую спираль, диаметром примерно 2 нм, длиной (в разверну?