Контрольная работа: Защитные покрытия деталей РЭС-4
В зависимости от назначения деталей толщина золотого покрытия колеблется в пределах 1–5 мкм. Для повышения твердости поверхности золото осаждают вместе с никелем (твердое золочение). При золочении стальных деталей их предварительно меднят.
В качестве электролитов при золочении применяют цианистые (на основе комплексной цианистой соли золота и цианистого калия) и бесцианистые (на основе золотохлористой водородной кислоты и железистосинеродного калия) электролиты. При золочении необходимы особые меры предосторожности, так как цианистые электролиты сильно ядовиты.
Золотые покрытия имеют следующие обозначения: З.1 – покрытие по меди и ее сплавам; М35.З1 – покрытие по стали и сплавам на основе железа.
2. Химические покрытия
Химические покрытия представляют собой тонкий слой защитной пленки, образующийся на поверхности детали за счет окислительно-восстановительных процессов, протекающих в процессе получения защитного покрытия. Различают два вида химических покрытий: оксидные и фосфатные, которые образуются в результате химического взаимодействия определенных химических растворов с металлами детали; химические пленки металлов, получаемые в результате восстановительных процессов в растворах, содержащих соли металла.
Химические пленочные покрытия служат для повышения стойкости материала деталей к коррозии, износостойкости, электропроводности и т.п. Основные требования, предъявляемые к этим покрытиям: прочное сцепление с покрываемой поверхностью, отсутствие пористости. Равномерность толщины слоя по всей поверхности.
Перед нанесением химических покрытий детали подвергают механической обработке, обезжириванию и травлению для удаления окисной пленки и выявления структуры основного металла.
В производстве РЭС наибольшее применение получили оксидные и фосфатные покрытия на деталях, изготовленных из алюминиевых, магнитных сплавов и сплавов на основе железа.
Оксидные покрытия на алюминиевых сплавахобладают высокой коррозионной стойкостью и твердостью, повышенной теплостойкостью и электроизоляционными свойствами. На поверхности алюминия всегда образуется естественная оксидная пленка толщиной около 0,1 мкм, но она не гарантирует защиту деталей в средних и тяжелых условиях эксплуатации.
Более стойкие оксидные покрытия получают химическим оксидированием и электрохимическим оксидированием, получившим название анодирования.
Химическое оксидирование применяют для деталей сложной формы. Процесс состоит в погружении деталей в ванну с раствором на основе соды кальцинированной (NaCO3 ), хромовокислого натрия (Na2 Cr2 O7 ) и воды, время выдержки 3–5 мкм. Толщина окисных пленок при этом составляет 2 – 5 мкм. Для лучшей защиты от действия внешней среды окисные пленки обрабатывают (хроматируют) в 2%-ном растворе окиси хрома (СrО3 ), который заполняет поры и нейтрализует щелочи в порах. Химическое оксидирование является дешевым и простым способом защиты деталей.
Следует отметить, что на швах, полученных в результате пайки оловом, оловянисто-свинцовым или серебряным припоем, оксидное покрытие не образуется.
Электрохимическое оксидирование (анодирование) выполняют в электролите постоянным или переменным током. При анодировании постоянным током детали завешивают на анод, а катодом служат свинцовые пластины, а при анодировании переменным током детали завешивают на оба электрода.
В качестве электролитов применяют водные растворы серной, щавелевой или хромовой кислоты. Для обеспечения большей надежности детали бортовой аппаратуры анодирование выполняют в растворах щавелевой и хромовой кислоты. Толщина анодных покрытий составляет 10–100 мкм, при этом размер деталей не изменяется, так как процесс образования пленки происходит за счет металла детали. Окисная пленка состоит из внутренней плотной тонкой пленки и внешней пористой пленки, поэтому анодные окисные пленки могут пропитываться для получения различных свойств поверхностей деталей. При пропитке водным раствором черного анилинового красителя получаются матово-черные поверхности с малым отблеском. Жаростойкие пленки могут быть получены пропиткой светочувствительными солями серебра. Толстые пленки, пропитанные маслом, применяются для направляющих полозьев выдвижных блоков, твердость такой пленки близка к твердости закаленной стали.
Толстые окисные пленки, полученные электрохимическим способом, применяются не только как защитные, но и как диэлектрические. Диэлектрические пленки на алюминиевой фольге, тантале применяются для изготовления электрических конденсаторов.
Оксидные покрытия имеют следующие обозначения: Хим. Окс – химическое окисное покрытие; Хим. Окс.хр – химическое окисное с хроматированием; Ан. Окс.10.хр – анодизационное окисное (толщина 10 мкм) с хроматированием.
Оксидные покрытия на магниевых сплавах применяют для защиты от коррозии поверхности деталей. Магний относится к активным элементам, его электродный потенциал составляет -2,4 В. Магниевые сплавы находят применение для изготовления деталей бортовой радиоэлектронной аппаратуры, так как они обладают малым удельным весом и высокой удельной жесткостью, и удельной прочностью.
Оксидные покрытия получают методами химического оксидирования и электрохимического оксидирования (анодирования).
Операция оксидирования состоит в погружении деталей в водный раствор, состоящий из хромовокислого калия (К2 Cr2 O7 ), азотной кислоты (НNO3 )и хлористого аммония (NH4 Cl). Время выдержки в растворе составляет 2–3 мин, а толщина защитной пленки 6–8 мкм. После оксидирования детали должны тщательно промывать в холодной, а затем в горячей воде.
Электрохимическое оксидирование (анодирование) применяют для получения более толстых защитных пленок (до 10–15 мкм). Анодирование производят в водном растворе хромовокислого калия (K2 Cr2 O7 ) тринатрийфосфата (Na3 PO4 ). Детали навешиваются на анодную шину, а катодом служит железная пластина. Обозначение покрытий подобно обозначению на деталях из алюминиевых сплавов.
Оксидные покрытия по стали состоят из окисных соединений железа (FeO, Fe2 O3 , Fe3 O4 ). Защитные свойства пленки зависят от ее толщины и режима оксидирования. Бывают три способа оксидирования – термический, химический и электрохимический.
Термический способ (воронение) заключается в нанесении на деталь тонкого слоя асфальтового или масляного лака, сушке на воздухе и термической обработке при температуре около 350о С с последующим охлаждением в минеральном масле. Обработанные таким образом детали имеют защитную пленку из окислов железа, покрытого тонким слоем асфальта или осмоленного лака.
При химическом способе воронения детали погружаются в расплавленные соли, например, смеси селитры и двуокиси марганца, нагретые до температуры 350о С. При этом на поверхности появляется защитная пленка черного цвета. Для получения пленки синего цвета детали погружаются в раствор солей, состоящий из нитрата натрия и нитрита натрия, и выдерживают при температуре около 310о С.
Фосфатные покрытияимеют лучшие защитные свойства, чем оксидные, не разрушаются и не теряют своих свойств, при кратковременном нагреве до температуры 400о С, обладают высоким электрическим сопротивлением и высокой электрической прочностью (выдерживают электрическое напряжение от 250 до 1200 В). Фосфатные пленки имеют пористую и губчатую структуру, поэтому хорошо удерживают смазки и обладают высокой прочностью сцепления с лакокрасочными покрытиями. Фосфатные пленки применяют как изоляционное покрытие пластин магнитопроводов, трансформаторов и различных деталей, работающих в легких, средних и жестких условиях эксплуатации.
Фосфатирование стальных деталей производится в растворе МАЖЕФ, содержащем марганцевые и железистые фосфаты. Фосфатирование ведется при температуре 80–90о С в течение 5–10 мин.
Фосфатирование деталей из алюминия и его сплавов осуществляется кипячением в 10%-ном растворе ортофосфорной кислоты с добавлением бихромата калия и фториевого натрия.
Кроме химических фосфатных покрытий бывают окисно-фосфатные покрытия, которые применяются для защиты от коррозии сплавов на основе алюминия при средних и тяжелых условиях эксплуатации. Окисно-фосфатные покрытия производят в растворе фосфорной кислоты, азотнокислого кальция и перекиси марганца. При этом покрытия получаются красивого черного цвета. Фосфатные покрытия имеют следующие обозначения: – химическое фосфатное с хроматированием, с последующим лакокрасочным покрытием; Хим. Окс. Фос. – окисно-фосфатное покрытие.
Химические металлические покрытия применяют для защиты от коррозии, повышения электропроводности, износостойкости, декоративной отделки деталей из металлов и пластмасс. Металлические покрытия получают методом химической металлизации в специальных растворах. Химическая металлизация основана на протекании в растворах окислительно-восстановительных реакций, при которых происходит восстановление ионов осаждаемого металла на поверхности детали.
Химическое меднение поверхностей стальных деталей выполняют погружением их в водный раствор, состоящий из сернокислой меди и серной кислоты.