Курсовая работа: Анализ типового радиотехнического звена

Корреляционная функция полезного сигнала находится как математическое ожидание произведения значений случайного процесса в два различных момента времени . В данном случае полезный сигнал – квазидетерминированный процесс с корреляционной функцией и энергетическим спектром .

В сумме входное воздействие имеет следующие характеристики:

, (2.9) (2.10)

Графики корреляционной функции и одностороннего энергетического спектра приведены на рисунках 2.3 и 2.4.

Рисунок 2.3 Корреляционная функция входного воздействия.

Рисунок 2.4 Энергетический спектр входного воздействия.

Пользуясь формулой (2.5), спектр мощности сигнала на выходе первого фильтра можно определить следующим выражением:

.Двумя слагаемыми, соответствующими составляющим спектра, не пропускаемым фильтром, из-за малости пренебрегаем. Рабочее выражение для энергетического спектра приобретает вид:

(2.11)

График спектра мощности сигнала на выходе первого фильтра показан на рисунке 2.5.

Рисунок 2.5 Спектр мощности сигнала на выходе первого фильтра.

Корреляционная функция сигнала на выходе первого линейного фильтра, согласно (2.2), находится как обратное преобразование Фурье от энергетического спектра и вычисляется следующим образом:

Вычислим каждый интеграл отдельно. По свойству дельта – функции, она отлична от нуля только тогда, когда аргумент равен нулю. Используя это свойство, найдем третий и четвертый интегралы:

Первый и второй интегралы вычислим при помощи теории вычетов. По основной теореме о вычетах известно, что если функция f(z) аналитична в ограниченной односвязной области, за исключением конечного числа изолированных особых точек, то ее интеграл по замкнутому контуру g, лежащему в этой области, равен сумме вычетов, соответствующих особым точкам, охваченным этим контуром.

Для первого и второго интегралов получаем:

Перейдя в интегралах к комплексной частоте и заменив линейное интегрирование в бесконечных пределах интегрированием по замкнутому контуру, получим первый интеграл:

.

Подынтегральная функция имеет следующие особые точки:

.

Мы будем замыкать контур в верхней полуплоскости, и потому накладываем ограничение. Тогда в контур попадет один полюс :

.

Значение интеграла определяется, согласно теории вычетов [1], следующим образом:

.

Аналогично получим второй интеграл:

К-во Просмотров: 406
Бесплатно скачать Курсовая работа: Анализ типового радиотехнического звена