Курсовая работа: Аналіз викидів пересувних джерел в місті Черкаси і перспективи впровадження енергозберігаючих технологій
В 1992 році був прийнятий Закон України про охорону атмосферного повітря. Законом встановлені єдині для України нормативи екологічної безпеки атмосферного повітря, до яких відносяться гранично допустимі концентрації ГДК забруднюючих речовин від автомобілів в атмосферному повітрі. Для транспортних засобів встановлюються нормативи змісту забруднюючих речовин в відпрацьованих газах автотранспорту.
Передбачаються заходи по зниженню токсичності і знешкодженню відпрацьованих газів автомобілів і других транспортних засобів переходу транспорту на менш шкідливі види енергії і палива, обмеженню в їзду автотранспорту в житлові зони. Заборонено виробництво і експлуатацію транспортних засобів, в яких перевищує встановлені норми вмісту забруднюючих речовин у відпрацьованих газах автотранспорту. Поліпшення конструкцій транспортних засобів і умов їх експлуатації. Організація в межах міста режимів руху всіх видів транспорту.
Введення на території України з січня 2001 року норми Євро-2 поки є чисто декларативним актом, оскільки, нераціональна структура вітчизняної нафтопереробки, недостатні потужності вторинних процесів визначає низьку якість вироблюваних бензинів і дизельного палива, не відповідного сучасним вимогам.
Якість вітчизняних автомобільних двигунів повинні бути кращими, в більшості поступаються зарубіжним по таких показниках, як питома потужність, економічність, експлуатаційна технологічність, екологічність.
Тому, в даний час єдиним шляхом підвищення екологічності автотранспорту є його перехід на природний газ, що забезпечить скорочення шкідливих викидів в оточуючу середовище двигунами автомобілів до рівня, що відповідає жорстким європейським нормам. Норми токсичності вихлопних газів автомобілів представлені в таблиці 1.4.
Таблиця 1.4 - Норми токсичності вихлопу автомобілів для розвинених європейських країн
Найменуваннястандартів | Рік введення | Вміст у вихлопі токсичних речовин | |||
![]() ![]() | CO | ![]() | Тверді частинки | ||
Євро - 0 | 1988 | 14,4 | 11,2 | 2,5 | ----- |
Євро - 1 | 1993 | 8,0 | 4,5 | 1,1 | 0,36 |
Євро - 2 | 1996 | 7,0 | 4,0 | 1,1 | 0,15 |
Євро - 3 | 1999 | 5,0 | 2,0 | 0,6 | 0,1 |
Євро - 4 | 2005 | 3,5 | 1,5 | ----- | 0,02 |
Євро - 5 | 2008 | 2,0 | 1,5 | ----- | 0,02 |
Проблема переводу автотранспорту на природний газ є рішенням комплексу складних задач, серед яких найзначущішими є: серійне виробництво газобалонних автомобілів, створення інфраструктури (мережі) заправних комплексів; розробка і виробництво надійного газобалонного устаткування; створення сервісної мережі для переобладнання автотранспортних засобів; підготовка кадрів; праве і рекламно-інформаційне забезпечення і т.д. У зв'язку з чим, програми газифікації автотранспорту і поліпшення екологічної обстановки можуть бути реалізовані не тільки по указу зверху, але і при підтримці і безпосереднім участь регіональних властей.
1.2.4 Використання систем очищення викидів автотранспорту
Рішення проблеми зниження токсичності відпрацьованих газів двигунів внутрішнього згорання (ДВЗ) є однією з найскладніших і найактуальніших задач захисту навколишнього середовища від забруднення СО, CnHm, NOx та іншими токсичними речовинами. За оцінками фахівців, автотранспортні засоби є постачальниками 50 – 80% від загальної кількості оксиду вуглецю (II) та оксидівазоту, що надходить в атмосферу великих міст. Забруднення повітря відпрацьованими газами двигунів внутрішнього згорання – проблемаглобального масштабу, особливо для густонаселених промислових центрів. За останні 60 років кількість транспортних засобів збільшилась від 40 до більш як 700 мільйонів. За прогнозами до 2010 року ця цифра досягне 920 мільйонів [1]. Вимоги по обмеженню токсичності відпрацьованих газів двигунів внутрішнього згорання почали застосовувати у 70–х роках минулого століття в США і Японії, а потім і в інших країнах. У зв`язку зі збільшенням кількості автомобілів і їх негативним впливом на навколишнє середовище ці вимоги стають все жорсткішими.
В таблиці 1.2.4 наведено склад викидних газівдизельних і бензинових двигунів[2]. Як видно з таблиці до складу викидних газів входять чотири типи компонентів: вуглеводні, оксиди азоту, оксиди сірки та оксид вуглецю (ІІ).
Таблиця 1.1.2.4 − Склад викидних газів двигунів
Компонентивикидних газів | Вміст увикидних газахдизельногодвигуна | Вміст увикидних газахбензиновогодвигуна |
NOx | 350-1000 ppm | 1200 ppm |
CnНm | 50-330 ppm | 1300 ppm |
CO | 300-1200 ppm | 1300 ppm |
O2 | 10 - 15% | 4 - 12% |
H2 O | 1,4 –7% | 12% |
CO2 | 7% | 11% |
SOx | 10-100 ppm | 20 ppm |
Сажа | 65 мг/м3 | -- |
При повному згоранні вуглеводневого палива утворюється лише вода і вуглекислий газ, однак, через недосконалість процесу горіння і високі температури в камері згорання, автомобільні викиди містять значні
кількості токсичних компонентів, що є серйозною загрозою навколишньому середовищу.
Всі відомі способи зменшення кількості шкідливих викидів за рахунок регулювання або зміни конструкції двигуна не дають очікуваного ефекту.
Каталітичні системи очищення токсичних компонентів відпрацьованих газів з використанням хімічних реакцій окислення і відновлення наразі є найефективнішим способом зниження токсичності викидів. Для цього у випускну систему двигуна встановлюють спеціальний термічний реактор.
За відсутності каталізаторів повне перетворення оксиду вуглецю і незгорівших вуглеводнів відбувається в діапазоні температур від 700 до 850 градусів за умови надлишку кисню. Знешкоджити оксиди азоту при цьому неможливо, оскільки обов`язковою умовою їх відновлення є відсутність вільного кисню.
За присутності каталізаторів температура процесу знижується і забезпечується перетворення всіх токсичних компонентів. Знешкодження токсичних компонентів газових викидів автомобільних двигунів відбувається за наступними основними реакціями
CO 2 + O2 → 2 CO2 (1)
HC+ O2 → CO2 + H2 О (2)
CO2 + 2 NO → 2 CO2 + N2 (3)
HC + NO → CO2 + H2 О+ N2 (4)
2Н2 + 2 NO→ 2 Н2 О+ N2 (5)
Тобто, за реакціями 1 і 2 очистка відбувається в окиснювальному режимі, який забезпечує вилучення оксиду вуглецю (II) і вуглеводнів, а при низьких концентраціях кисню (тобто при коефіціенту надлишку повітря меньше 1,1) відновлення оксидів азоту здійснюється за реакціями 3 – 5. Застосування відповідних каталізаторів забезпечує одночасне окиснення оксиду вуглецю (II) і вуглеводнів, а також відновлення оксидів азоту. Сучасні каталітичні системи очищення достатньо довговічні, їх застосування не призводить до суттєвого збільшення витрат палива і зниження потужності двигуна. При оптимальному управлінні процесом згорання можуть бути виконані найжорсткіші екологічні вимоги, що висуваються до автомобілів.
Розробка методів комплексної очистки газів, що відходять від автотранспорту шляхом пригнічення утворення токсичних сполук.
Каталітична нейтралізація виконується шляхом пропускання потоку відпрацьованих газів через два комплекти електродів, кожний з яких складається з сіток з голками і без голок. Процес базується на відновно-окиснювальних процесах, що протікають в зоні розряду на 150 – 200 градусів нижче, ніж при звичайному термічному каталізі.
Основною різницею електрокаталітичного процесу від термічного є те, що при будь – яких режимах роботи двигуна через протікання радикальних реакцій в зоні розряду спостерігається високий ступінь відновлення і окиснення токсичних сполук, а також повне згорання сажі і смоли. Це можливо за рахунок зниження енергетичних бар`єрних процесів.
Потік газу від двигуна направляється в каталітичний реактор. В нейтралізаторі змонтовані два комплекти сіток з голками 2 з високолегованих сталей.
На кожну голку нанесено діелектрик і каталізатор. Між комплектами сіток через штуцер 3 підводять повітря. Після нейтралізації потік газу викидається в атмосферу. В якості джерела струму використовується катушка запалення 4. Кількість сіток у відновній і окиснювальній зонах повинна бути парною ( рисунок 1.1.2.4).
Рисунок 1.1.2.4 − Схема нейтралізації газів
Процес проведено на сітках при різних напругах і режимах роботи двигуна. Введення повітря в газовий потік суттєво впливає на процес знешкодження токсичних компонентів( рисунок 1.1.2.4, 2.1.2.4).