Курсовая работа: Аппроксимация экспериментальных зависимостей
Задание 1
Данные давления водорода Н2 на линии насыщения приведены в таблице. Сделать аппроксимацию экспериментальных данных в виде степенной функции и многочлена первой степени. Произвести сравнительный анализ ошибки аппроксимации полученной двумя функциями.
Таблица 1
Ts ,0 К | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
Pмм рт. ст. | 360,3 | 509,5 | 699,2 | 935,3 | 1223.7 | 1570,5 | 1981,8 | 2463,8 |
Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Теоретические сведения
Пусть, в результате эксперимента получена зависимость.
Необходимо найти аналитическую формулу f = , которая аппроксимирует экспериментальную (табличную) зависимость.
Выберем зависимость в виде полинома 2 – й степени, т.е.
(1)
В выражении (1) коэффициенты , , подлежат определению, причем эти коэффициенты должны быть подобраны таким образом, чтобы зависимость наилучшим образом приближалась к экспериментальной зависимости. Пусть отклонение - различие между табличным значением в точке и значением аналитической функции в этой же самой точке, т.е.:
(2)
В соответствии с методом наименьших квадратов (МНК) наилучшими коэффициентами зависимости (1) будут такие, для которых сумма квадратов отклонений будет минимальной.
(3)
Используя необходимые условия существования экстремума для функций нескольких переменных , находим уравнение для определения коэффициентов зависимости (1).
(4)
Из условия (4) получим систему линейных алгебраических уравнений:
(5)
Решив систему (5) найдем коэффициенты аппроксимирующей зависимости (1).
Эффективным методом решения систем линейных алгебраических уравнений является матричный метод. Сущность его состоит в следующем.
Пусть А — матрица коэффициентов системы уравнений, X — вектор неизвестных, В — вектор правых частей системы уравнений. Тогда решение системы уравнений в матричной форме будет иметь вид:
Х = А -1 В.
Правило Крамера
Если ранг матрицы совместной системы равен числу ее неизвестных, то система является определенной. Если число неизвестных системы совпадает с числом уравнений ( m = n ) и матрица системы невырожденная (detA ≠ 0), то система имеет единственное решение, которое находится по правилу Крамера:
В этих формулах ∆ = detА — определитель системы, а ∆k — определитель, полученный из определителя системы заменой k -г o столбца столбцом свободных членов ( k = 1, 2,..., n ).
Решение системы трех линейных уравнений с тремя неизвестными можно выразить через определители:
, ,
Информационное обеспечение
Зависимость давления P водорода Н2 при различных температурах на линии насыщения приведены в таблице (1).
Для проведения анализа исходных данных с целью выбора вида аппроксимирующего многочлена построим график функции, заданной в табл.1. График приведен на рис.1.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--