Курсовая работа: Атомно-абсорбционный анализ
ВВЕДЕНИЕ
Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека микроэлементами. С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на организм человека, способны накапливаться в тканях, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие как свинец и ртуть, определяются как токсичные металлы. Поэтому определение концентрации тяжелых металлов в различных товарах общественного потребления является очень важно.
Одним из современных методов определения концентрации тяжелых металлов, который получил широкое распространение, является метод атомно-абсорбционной спектрометрии. Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью определять в растворах около восьмидесяти элементов в малых концентрациях, поэтому он широко применяется в биологии, медицине (для анализа органических жидкостей), в геологии, почвоведении (для определения микроэлементов в почвах), в металлургии (для исследований и контроля технологических процессов) и в других областях науки.
1. ЛИТЕРАТУРНЫЙ ОБЗОР
1.1 Железо как элемент периодической системы Д. И. Менделеева
ЖЕЛЕЗО (Ferrum, Fe), химический элемент VIII группы периодической системы, атомный номер – 26, атомная масса – 55,847. Состоит из четырех стабильных изотопов: 54 Fe (5,84%), 56 Fe (91,68%), 57 Fе (2,17%), 58 Fe (0,31%). Конфигурация внешнего электронного слоя – 3d6 4s2 . Может проявлять степени окисления +1, +4, +6, +8, наиболее характерными являются +2 и +3.
1.1.1 Нахождение в природе
Железо – один из самых распространенных элементов в природе, его содержание в земной коре составляет 4,65% по массе. Известно свыше 300 минералов, из которых слагаются месторождения железных руд. Промышленное значение имеют руды с содержанием Fe свыше 16%. Важнейшие рудные минералы железа: магнетит (магнитный железняк) Fe3 O4 (содержит 72,4% Fe), гематит (железный блеск, красный железняк) Fe2 O3 (70% Fe), гётит α-FeO(OH), или Fe2 O3 * H2 O, лепидокрокит g-FeO(OH) и гидрогётит (лимонит) Fe2 O3 * H2 O (около 62% Fe), сидерит FeCO3 (48,2% Fe), ильменит FeTiO3 (36,8% Fe). Наряду с полезными примесями - Mn, Cr, Ni, Ti, V, Co - железные руды содержат и вредные примеси - S, P и другие. Железо входит в состав природных силикатов, значительные скопления которых могут иметь промышленное значение для производства железа или его соединений. Различают такие основные типы железных руд: Бурые железняки – руды гидроксидов Fe(III), содержат до 66,1% Fe (чаще 30–55%), имеют осадочное происхождение. Гематитовые руды, или красные железняки (главный минерал - гематит), содержат обычно 50–65% Fe. Для них характерно залегание богатых руд поверх мощных толщ бедных (30–40% Fe) магнетитовых кварцитов. Магнетитовые руды, или магнитные железняки (главный минерал – магнетит), содержат чаще всего до 45–60% Fe. Верхние горизонты магнетитовых рудных тел обычно частично окислены до гематита (полумартиты и мартиты). Силикатные руды (25-40% Fe) осадочного происхождения, относятся к группе зеленых слюд-хлоритов. Главные минералы - шамозит Fe4 (Fe, Al)2 [Al2 Si2 O10 ](OH)8 и тюрингит (Mg, Fe)3,5 Al1,5 [Si2,5 Al1,5 O10 ](ОН)6 *nН2 О – содержат до 42% Fe. Мировые разведанные запасы железных руд составляют 231,9 млрд. т, или 93 млрд. т в пересчете на железо. Перспективно использование бедных железом горных пород и железомарганцевых конкреций. Их мировые запасы оцениваются в 3000 млрд. т. В чрезвычайно редких случаях железо встречается в земной коре в составе минерала иоцита FeO, а также в виде самородного железа – метеоритного и теллурического (земного происхождения). Теллурическое железо образуется в результате восстановления оксидов и сульфидов железа углеродом из железистой магмы и при подземных пожарах угля, контактирующего с пластами руды. [1].
1.1.2 Характеристика простого вещества
Железо — типичный металл, в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности — углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами.
Для железа характерен полиморфизм, он имеет четыре кристаллические модификации:
— до 769 °C существует α-Fe (феррит) с объемно-центрированной кубической решёткой и свойствами ферромагнетика (769 °C ≈ 1043 K — точка Кюри для железа)
— в температурном интервале 769—917 °C существует β-Fe, который отличается от α-Fe только параметрами объемно-центрированной кубической решётки и магнитными свойствами парамагнетика
— в температурном интервале 917—1394 °C существует γ-Fe (аустенит) с гранецентрированной кубической решёткой
— выше 1394 °C устойчив δ-Fe с объемно-центрированной кубической решёткой
Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α—γ переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.
Железо тугоплавко, относится к металлам средней активности. Температура плавления железа 1539 °C, температура кипения — 2862 °C.
1.1.3 Промышленное получение металлического железа
В промышленности железо получают из железной руды, в основном из гематита (Fe2 O3 ) и магнетита (Fe3 O4 ). Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
В печи углерод кокса окисляется до монооксида углерода (угарного газа) кислородом воздуха:
2C + O2 → 2CO↑.
В свою очередь, угарный газ восстанавливает железо из руды:
3CO + Fe2 O3 → 2Fe + 3CO2 ↑.
Флюс добавляется для извлечения нежелательных примесей из руды, в первую очередь силикатов, таких как кварц (диоксид кремния). Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Против других примесей используют другие флюсы.
Действие флюса: карбонат кальция под действием тепла разлагается до оксида кальция (негашёная известь):
CaCO3 → CaO + CO2 ↑.
Оксид кальция соединяется с диоксидом кремния, образуя шлак:
CaO + SiO2 → CaSiO3 .