Курсовая работа: Бродильная промышленность. Технологическое оборудование

Рис.4 Устройство для мембранной фильтрации

3.3 Мембранный аппарат (1)

Изобретение относится к трубчатым мембранным аппаратам для очистки жидкости, в частности очистки сточных вод промышленных предприятий, природных вод в системах водоснабжения, очистки смазочно-охлаждающих жидкостей в процессах регенерации отработанных масел и моющих растворов и для концентрирования растворов ферментов, осветления соков и т.д. Мембранный аппарат (рис. 5) содержит корпус с патрубками для подвода исходной жидкости, отвода очищенной жидкости и концентрата и трубные решетки с закрепленными в них трубчатыми мембранными элементами. Один конец трубчатых мембранных элементов закрыт пробками из герметика и зажат опорной головкой с глухими отверстиями под каждый мембранный элемент. Другой конец мембранных элементов герметизирован с помощью двух трубных решеток, между которыми налит слой герметика, и через слой герметика зажат перфорированным опорным диском с диаметром отверстий, равным внутреннему диаметру или меньшим внутреннего диаметра трубчатых мембранных элементов. Технический результат: уменьшение металлоемкости и трудоемкости в изготовлении, обеспечение широкого диапазона температурных режимов и возможности проведения импульсной высокоскоростной промывки обратным током очищенной жидкости в течение всего срока службы без замены отдельных мембранных элементов, создание аппарата, противодействующего возникновению колебаний при высоких скоростях потока.

Рис. 5. Мембранный аппарат

3.4 Мембранный аппарат (2)

Изобретение относится к разделению смесей с помощью полупроницаемых мембран и может быть использовано в химической, микробиологической, электронной, пищевой и других отраслях промышленности для осуществления ультрафильтрации, обратного осмоса и других мембранных процессов. Целью изобретения является исключение застойных зон в аппарате и упрощение его конструкции. Аппарат для проведения мембранного процесса разделения содержит несущие фланцы со штуцерами и отверстиями для ввода исходной смеси и вывода концентрата и фильтрата, пакет мембранных элементов. Каждый мембранный элемент имеет каркасную пластину с углублением на одной плоскости для образования камеры прохода исходного раствора.

В результате интенсивного осаждения различных загрязнений происходит снижение производительности и увеличение гидравлического сопротивления аппарата. В рассматриваемом аппарате загрязнения удаляются с помощью ультразвука, который от генератора поступает по волноводу на отражатель. Ультразвук возбуждает в разделяемом растворе кавитацию, в результате которой в потоке возникают пульсирующие пузырьки, часть которых потоком вносится внутрь каппиляра волокна. Пузырьки, оказывая силовое воздействие на осевшие частицы загрязнений, отрывают их от стенок на входе и внутри капилляра, после чего эти частицы уносятся с разделяемой жидкостью. Таким образом, все каналы очищаются от загрязнений, что приводит к воостановлению первоначального гидравлического сопротивления и производительности.

Отличительной особенностью аппарата является то, что форма излучателя ультразвуковых колебаний выполняется в соответствии с контуром, ограничиваемым крайними входными каналами пучка полых волокон (рис. 6).



4. Описание разработанного объекта

4.1 Назначение, область применения и принцип действия разработанного объекта

Мембранный аппарат ( КП-ТО-02068108-260602-2007-АПЛ-01.00.000 СБ) предназначен для концентрирования методом микрофильтрации лагерного осадка, остающегося в бродильном танке после проведения процесса брожения и дображивания пива. Также аппарат может применяться в химической, электронной, микробиологической, медицинской и пищевой (для осветления соков и вин, холодной стерилизации пива и т.д.) промышленности для разделения и концентрирования растворов различных веществ.

Мембранный аппарат содержит корпус поз. 4, внутри которого с помощью прижимов поз. 3 закреплён половолоконный модуль поз. 1, который и выполняет функцию разделяющего элемента. Размер пор волокна порядка 3 мкм. Концентрируемая смесь подаётся внутрь корпуса по штуцеру I, а затем – внутрь полых волокон. Концентрат выводится из аппарата через штуцер II, а так называемый пермеат – через штуцер III. Для присоединения аппарата к цеховым трубопроводам на патрубке II имеется гильза с резьбой поз. 5, а на патрубках I и III – присоединены приварные штуцера поз. 21.

Уплотнение аппарата производится с помощью эластичных прокладок поз. 16 и 17, установленные соответственно на излучателе ультразвука поз. 8 и фланцами 20.

Ультразвук передаётся на излучатель по волноводу поз. 6 от генератора. Ультразвук возбуждает в разделяемом растворе кавитацию, в результате которой в потоке возникают пульсирующие пузырьки, часть которых проникает внутрь капилляра волокна. Эти пузырьки оказывают силовое воздействие на осевшие частицы загрязнений, отрывая их от стенок капилляра волокон. Это приводит к тому, что производительность аппарата восстанавливается до первоначального значения, а гидравлическое сопротивление при этом не увеличивается.

Ультразвук на разделяемый поток действует не постоянно, а периодически, что не приводит к дополнительным энергозатратам на питание генератора ультразвука.

Излучатель подпирается с помощью пружины поз .15, которая располагается в опорной крышке поз. 7.

Разработанный аппарат имеет следующую техническую характеристику:

Производительность по исходному раствору, л/ч 200
Рабочий объём, 0,057
Площадь фильтрующей поверхности, 1,8
Рабочее давление, МПа 0,1
Габаритные размеры 965525 303

4.2 Выбор схемы проведения процесса разделения

Принципиально существуют два способа проведения процессов мембранного разделения – тупиковый и проточный.

Тупиковый используют редко, в основном на патронных мембранных элементах, хотя при введении регенерации мембран с помощью гидравлического удара обратным током пермеата со сбросом порции загрязнений из аппарата такой способ возможен и в других случаях.

При организации проточного процесса необходимо учитывать следующие обстоятельства:

1 – по длине аппарата объемный расход разделяемого потока уменьшается за счет оттока пермеата. Пропорционально уменьшается линейная скорость жидкости вдоль мембраны и усиливается влияние КП;

2 – по длине аппарата концентрация задерживаемых мембраной компонентов растет, пропорционально повышается и концентрация их в пермеате;

3 – по длине аппарата давление над мембраной падает из-за гидравлического сопротивления в напорном канале, соответственно снижается движущая сила процесса;

4 – глубокое концентрирование раствора требует каскадной схемы соединения аппаратов;

5 – глубокая очистка раствора требует многоступенчатой схемы соединения аппаратов.

В проточных схемах используют две конфигурации потоков – прямоточную и циркуляционную (рис. 7).

Рис. 7. Принципиальная схема прямоточной (а) и циркуляционной (б) установок.

В прямоточной установке разделяемая смесь однократно проходит через напорный канал мембранного аппарата (или аппаратов, если их несколько), в циркуляционном – многократно, для чего предусмотрен специальный циркуляционный контур с насосом. Циркуляционные установки применяются, когда крайне необходимо обеспечить высокую скорость потока в напорном канале (например, чтобы не происходило образование геля на мембране в процессе ультрафильтрации).

В циркуляционной схеме необходимая скорость потока достигается за счет циркуляционного насоса, установленного на обводной линии. Условно такая схема ближе к аппаратам идеального смешения. Основным для учета здесь является обстоятельство №2 – рост концентрации. Фактически во всем объеме циркуляционного контура находится концентрат, что понижает эффективность очистки пермеата.

В проектируемой мембранной системе будем использовать проточную схему осуществления процесса с циркуляционным контуром. Такая схема позволит обеспечить высокие скорости проведения процесса, что снизит негативное влияние концентрационной поляризации и избежать образования гелевых слоёв.

4.3 Выбор рабочих параметров процесса разделения

К-во Просмотров: 416
Бесплатно скачать Курсовая работа: Бродильная промышленность. Технологическое оборудование