Курсовая работа: Численные методы решения систем линейных уравнений
Это позволяет предложить следующий итерационный процесс:
или (другой вид записи)
Покажем, что если начать с точки P0 = (х1 (0) , х2 (0) , х3 (0) , х4 (0) ) = (1, 2, 2), то итерация (3) сходится к решению (2, 4, 3). Подставим х1 = 1, х2 = 2, х2 = 2 в правую часть каждого уравнения из (3), чтобы получить новые значения:
Новая точка P1 = (х1 (1) , х2 (1) , х3(1) , х4 (1) ) = (1.75, 3.375, 3), ближе, чем P0 .
Итерация, использующая (3), генерирует последовательность точек {Pk }, которая сходится к решению (2, 4, 3):
k | х1(k) | х2(k) | х3(k) |
0 | 1.0 | 2.0 | 2.0 |
1 | 1.75 | 3.375 | 3.0 |
2 | 1.84375 | 3.875 | 3.025 |
3 | 1.9625 | 3.925 | 2.9625 |
4 | 1.990625 | 3.9765625 | 3.0 |
5 | 1.99414063 | 3.9953125 | 3.0009375 |
… | … | … | … |
15 | 1.99999993 | 3.99999985 | 3.0009375 |
… | … | … | … |
19 | 2.0 | 4.0 | 3.0 |
Этот процесс называется итерацией Якоби и может использоваться для решения определенных типов линейных систем.
Итерация Гаусса-Зейделя.
Процесс итерации Якоби иногда можно модифицировать для ускорения сходимости.
Отметим, что итеративный процесс Якоби производит три последовательности – {х1 (k) }, {х2 (k) }, {х3 (k) }, {х4 (k) }. Кажется разумным, что х1 (k+1) может быть использовано вместо х2 (k ). Аналогично х1 (k+1) и х2 (k+1) можно использовать в вычислении х3 (k+1) . Например, для уравнений из системы (1) это даст следующий вид итерационного процесса Гаусса-Зейделя, использующий (3*):
Такой итерационный процесс даст результаты:
k | х1 (k) | х2 (k) | х3 (k) |
0 | 1.0 | 2.0 | 2.0 |
1 | 1.75 | 3.75 | 2.95 |
2 | 1.95 | 3.96875 | 2.98625 |
3 | 1.995625 | 3.99609375 | 2.99903125 |
… | … | … | … |
8 | 1.99999983 | 3.99999988 | 2.99999996 |
9 | 1.99999998 | 3.99999999 | 3.0 |
10 | 2.0 | 4.0 | 3.0 |
Т. е. к точному решению мы пришли уже на 10-ом шаге итерации, а не на 19, как в итерации Якоби.
Вывод.
1. Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы. Для этого система приводится к виду (для случая системы из четырех уравнений):
Эти формулы как раз и задают собственно итерационный процесс.
2. При этом чтобы итерационный процесс сходился к точному решению, достаточно, чтобы все коэффициенты системы были малы по сравнению с диагональными.
Это условие можно сформулировать и более точно:
Для сходимости процесса итераций достаточно, чтобы в каждом столбце сумма отношений коэффициентов системы к диагональным элементам, взятым из той же строки, была строго меньше единицы:
3. Следует так же сказать, что итерационный процесс может проводиться как в виде итерации Якоби, так и в виде итерации Гаусса-Зейделя. В последнем случае сходимость итерационного процесса может существенно улучшиться.
Практическая часть.
1) Метод обратной матрицы.
Метод обратной матрицы | ||||||
x1 | x2 | x3 | x4 | |||
12 | -4 | 0 | 6 | 2 | ||
A= | -4 | 21 | 5 | 3 | B= | 4 |
-3 | 2 | -22 | 1 | -2 | ||
-2 | -3 | 5 | 23 | 4 | ||
0,083 | 0,013 | -0,002 | -0,023 | |||
A-1 = | 0,016 | 0,048 | 0,009 | -0,011 | ||
-0,009 | 0,003 | -0,044 | 0,004 | |||
0,011 | 0,007 | 0,010 | 0,039 | |||
x= | 0,129 | |||||
0,165 | ||||||
0,097 | ||||||
0,186 |
2) Метод Крамера.
Метод Крамера | ||||||
x1 | x2 | x3 | x4 | |||
12 | -4 | 0 | 6 | 2 | ||
A= | -4 | 21 | 5 | 3 | B= | 4 |
-3 | 2 | -22 | 1 | -2 | ||
-2 | -3 | 5 | 23 | 4 | ||
'A'= | -134088 | |||||
2 | -4 | 0 | 6 | |||
A1 = | 4 | 21 | 5 | 3 | ||
-2 | 2 | -22 | 1 | |||
4 | -3 | 5 | 23 | |||
'A1 '= | -17296 | x1 = | 0,129 | |||
12 | 2 | 0 | 6 | |||
A2 = | -4 | 4 | 5 | 3 | ||
-3 | -2 | -22 | 1 | |||
-2 | 4 | 5 | 23 | |||
'A2 '= | -22188 | x2 = | 0,165 | |||
12 | -4 | 2 | 6 | |||
A3 = | -4 | 21 | 4 | 3 | ||
-3 | 2 | -2 | 1 | |||
-2 | -3 | 4 | 23 | |||
'A3 '= | -12980 | x3 = | 0,097 | |||
12 | -4 | 0 | 2 | |||
A4 = | -4 | 21 | 5 | 4 | ||
-3 | 2 | -22 | -2 | |||
-2 | -3 | 5 | 4 | |||
'A4 '= | -24896 | x4 = | 0,186 | |||
x= | 0,129 | |||||
0,165 | ||||||
0,097 | ||||||
0,186 |