Курсовая работа: Эйлеровы графы
6. Среди приведённых ниже графов найдите те, которые имеют собственный эйлеров цикл.[1]
Решение:
а) Данный граф связный; deg(a)=3, deg(b)=2, deg(c)=3, deg(d)=2, deg(e)=2. Ровно две вершины имеют нечётную степень, значит, по теореме 3, граф имеет собственный эйлеров путь.
б) Граф является связным и ровно две его вершины (е и f) имеют нечётную степень, значит, данный граф имеет собственный эйлеров путь.
в) Граф связный, найдём степени вершин: deg(d)=5, deg(b)=5, deg(e)=5, нашлись три вершины, степень которых нечётная, значит, граф не имеет эйлерова пути.
г) Данный граф связный и только две его вершины (а и b) имеют нечётную степень, значит, этот граф имеет собственный эйлеров путь.
7. Какие из следующих ориентированных графов имеют эйлеровы циклы? [1]
Решение:
а) Граф связный, найдём степени входа и выхода вершин (по теореме 5 степени входа и выхода каждой вершины должны совпадать):
indeg(a)=2, outdeg(a)=1, то есть нашлась вершина, у которой не совпадают степени входа и выхода, значит, граф не имеет эйлерова цикла.
б) Граф связный, найдём степени вершин:
indeg(a)=2 outdeg(a)=2
indeg(b)=2 outdeg(b)=2
indeg(c)=2 outdeg(c)=2
indeg(d)=2 outdeg(d)=2
indeg(e)=2 outdeg(e)=2
Следовательно, по теореме 5, граф имеет эйлеров цикл.
в) Граф связный, найдём степени вершин:
indeg(a)=2 outdeg(a)=2
indeg(b)=1 outdeg(b)=1
indeg(c)=3 outdeg(c)=1
Условия теоремы 5 не выполняются, значит, граф не имеет эйлерова цикла.
г) ) Граф связный, найдём степени вершин:
indeg(a)=2 outdeg(a)=1
Следовательно, т.к. условия теоремы 5 не выполняются то, граф не имеет эйлерова цикла.
8. Какие из следующих ориентированных графов имеют эйлеровы циклы? [1]