Курсовая работа: Эйлеровы графы

6. Среди приведённых ниже графов найдите те, которые имеют собственный эйлеров цикл.[1]

Решение:

а) Данный граф связный; deg(a)=3, deg(b)=2, deg(c)=3, deg(d)=2, deg(e)=2. Ровно две вершины имеют нечётную степень, значит, по теореме 3, граф имеет собственный эйлеров путь.

б) Граф является связным и ровно две его вершины (е и f) имеют нечётную степень, значит, данный граф имеет собственный эйлеров путь.

в) Граф связный, найдём степени вершин: deg(d)=5, deg(b)=5, deg(e)=5, нашлись три вершины, степень которых нечётная, значит, граф не имеет эйлерова пути.

г) Данный граф связный и только две его вершины (а и b) имеют нечётную степень, значит, этот граф имеет собственный эйлеров путь.

7. Какие из следующих ориентированных графов имеют эйлеровы циклы? [1]

Решение:

а) Граф связный, найдём степени входа и выхода вершин (по теореме 5 степени входа и выхода каждой вершины должны совпадать):

indeg(a)=2, outdeg(a)=1, то есть нашлась вершина, у которой не совпадают степени входа и выхода, значит, граф не имеет эйлерова цикла.

б) Граф связный, найдём степени вершин:

indeg(a)=2 outdeg(a)=2

indeg(b)=2 outdeg(b)=2

indeg(c)=2 outdeg(c)=2

indeg(d)=2 outdeg(d)=2

indeg(e)=2 outdeg(e)=2

Следовательно, по теореме 5, граф имеет эйлеров цикл.

в) Граф связный, найдём степени вершин:

indeg(a)=2 outdeg(a)=2

indeg(b)=1 outdeg(b)=1

indeg(c)=3 outdeg(c)=1

Условия теоремы 5 не выполняются, значит, граф не имеет эйлерова цикла.

г) ) Граф связный, найдём степени вершин:

indeg(a)=2 outdeg(a)=1

Следовательно, т.к. условия теоремы 5 не выполняются то, граф не имеет эйлерова цикла.

8. Какие из следующих ориентированных графов имеют эйлеровы циклы? [1]

К-во Просмотров: 681
Бесплатно скачать Курсовая работа: Эйлеровы графы