Курсовая работа: Экологическое содержание темы "Основания" в курсе неорганической и органической химии средней школы
Изложение нового материала. Учителю известно, что амины генетически связаны с нитросоединениями. Однако у учащихся почти нет знаний об этих соединениях, и поэтому рассматривать генетический переход от углеводородов к аминам через нитросоединения, конечно, не имеет смысла.
Объяснение можно построить на основе имеющихся у учащихся знаний об аммиаке, тем более что они должны были вспомнить их в процессе подготовки домашнего задания. Объяснение строят в форме рассказа, по возможности используя изготовленные учащимися модели молекул и демонстрационный эксперимент [5]. В ходе объяснения необходимо осветить следующие вопросы:
1. Состав и формулы аминов (метиламин, этиламин, диметиламин), их названия.
2. Физические свойства (низшие амины – газы, имеют запах аммиака, хорошо растворяются в воде).
3. Химические свойства (горение, взаимодействие с водой и кислотой).
Заметим, что обсуждение растворимости аминов в воде – это переход к их химическим свойствам, так как в основе растворения лежит химическое взаимодействие с водой. Рассмотрение этого взаимодействия предоставляет возможность по усмотрению учителя рассмотреть такие вопросы, как образование ковалентной связи по донорно-акцепторному механизму, проявление растворами аммиака и аминов основных свойств; сделать вывод о сходстве и различиях их свойств. В связи с тем, что ранее не рассматривался вопрос о взаимном влиянии атомов в молекулах органических веществ, причины различий обсуждать не следует.
С целью закрепления знаний учащимся можно предложить ответить на вопрос и выполнить задания:
1. Составьте формулы изомеров пропиламина СH3 – CH2 – CH2 – NH2 .
2. С какими из перечисленных ниже соединений вступает в реакцию этиламин: H2 O, NaOH, NaCl, HNO3 ? Напишите уравнения возможных реакций.
Задание на дом: § 40, выполнить задания 2, 4, повторить строение бензола (§ 17).
2.2.2 Анилин – представитель ароматических аминов, его практическое применение
Задачи урока: на примере анилиза закрепить знания учащихся о химических свойствах аминов; дать представление об ароматических аминах; показать практическую значимость анилина как важнейшего продукта химической промышленности [5].
Оборудование: на демонстрационном столе – анилин, вода, фенолфталеин, соляная кислота, раствор щелочи, пробирки.
Анилин изучается с целью конкретизации общего понятия об аминах и как важнейший представитель этого класса соединений.
В связи с этим урок можно провести в форме рассказа с максимальным привлечением учащихся для обсуждения заданий и вопросов:
1. Назовите гомологические ряды углеводородов и укажите особенности их строения.
2. Какие вещества относятся к аминам?
3. Какова формула ароматического амина?
4. Как доказать, что анилин проявляет основные свойства? Составьте уравнение химической реакции.
Далее внимание учащихся привлекают к реакции взаимодействия анилина с бромом, не останавливаясь на влиянии аминогруппы на бензольное кольцо, а лишь указывая, что особенности строения молекулы анилина обусловливают возможность осуществления этой реакции.
О получении и применении анилина для изготовления красителей, различных фармацевтических препаратов, фотореагентов, взрывчатых веществ, пластических масс и т.д. рассказывает учитель.
На этом уроке, по нашему мнению, целесообразно отметить в рассказе о производстве и применении анилина и токсическое воздействие выбросов как производства, так и побочных продуктов при использовании аминосоединений.
2.2.3 Развернутый план-конспект урока
При изучении данной темы надо закрепить основную идею о развитии органических веществ и причинах, порождающих их многообразие; углубить понятие о ковалентной связи на примерах аминов; расширить знания о водородных связях и амфотерных соединениях [6].
Азотсодержащие органические вещества изучаются методом сравнения, с привлечением ранее изученного материала, что дает возможность для широкого его обобщения.
Приступая к рассмотрению темы, предлагают учащимся вспомнить, какие соединения, содержащие азот, им известны. Учащиеся называют нитробензол, нитроглицерин, тринитроклетчатку. Коротко повторяют сведения о свойствах нитробензола и его получении в лаборатории. При этом составляют на доске уравнение реакции, отмечают ее тип (замещения) и дают название (реакция нитрования). На вопрос, могут ли быть проведены реакции нитрования предельных углеводородов, учащиеся дают утвердительный ответ. После этого записывают уравнения реакций нитрования до пятого гомолога. Учитель отмечает, что впервые эти реакции были проведены русским ученым М.И. Коноваловым в 1886 г. По аналогии с нитробензолом дает названия вновь полученным азотсодержащим веществам – нитрометан, нитроэтан и т.д. Далее коротко учитель знакомит учащихся с физическими свойствами полученных гомологов. Из химических свойств нитросоединений следует подчеркнуть их способность восстанавливаться водородом. Для того, чтобы учащиеся убедились в образовании гомологического ряда новых азотсодержащих веществ и самостоятельно их назвали, составляют уравнения реакций:
СН3 NО2 + 3Н2 ® 2Н2 О + СН3 NН2
С2 Н5 NO2 + 3Н2 ® 2Н2 О + С2 Н5 NН2
С3 Н7 NO2 + 3Н2 ® 2Н2 О + С3 Н7 NН2 и т.д.
Обращают внимание на образование новой функциональной группы атомов, – NН2 – аминогруппы. Здесь надо отметить, что аминами их называют по тем радикалам, которые входят в состав молекулы, с прибавлением слова «амин». После этого учащиеся без труда дают названия полученным веществам: метиламин, этиламин и др. Сопоставляя записанные ранее уравнения реакций нитрования с реакциями восстановления, делают вывод о генетической связи между гомологическими рядами органических веществ: углеводороды можно превратить в нитросоединения, а нитросоединения – в амины:
СН4 + НNО3 ® Н2 О + СН3 NО2 ;