Курсовая работа: Экономико-математические методы и прикладные модели
Пусть заданы:
функция f(X), определенная на множестве O Í RN ;
множество D Í RN .
Найти точку Y = (y1 , y2 ,..., yN ) Î D, в которой функция f (X) достигает экстремального (минимального или максимального) значения, т.е.
f(X) = extr f(X) и Y Î D.
Функция f(X) называется целевой функцией, переменные X – управляемыми переменными, D – допустимым множеством и любой набор значений Y управляемых переменных, принадлежащий D (Y Î D), - допустимым решением задачи оптимизации.
Понятно, что искомая точка Y, в которой f(X) достигает своего экстремума, должна принадлежать пересечению области определения O функции f(X) и допустимого множества D (YÎ O Ç D). Если множества O и D совпадают со всем пространством RN (O = D = RN ), то такая задача называется задачей на безусловный экстремум. Если хотя бы одно из множеств O или D является собственным подмножеством пространства RN (O Ì RN , D Ì RN ) или множества O и D пересекаются (O Ç D ¹ Æ), то такая задача называется задачей на условный экстремум, в противном случае (O Ç D = Æ) точка экстремума Y не существует. Подчеркнем один частный случай: если множества O и D пересекаются в одной точке Y, то эта точка Y является единственным допустимым решением.
Обычно в задаче условного экстремума задается не само допустимое множество решений D, а система соотношений, его определяющая,
yj (x1, х 2, х N ) £ (=, ³) 0, j = 1, 2, … М,
т.е.
D = {X: yj (X) £ (=, ³) 0, j = 1, 2, ... , M} Í RN ,
или множество D может одновременно задаваться как в явном виде, т.е. допустимое решение Х должно принадлежать некоторой области P Ì RN , так и системой ограничений.
III . Методы линейного программирования.
3.1. Общая и типовая задача в линейном программировании.
Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.
В самом общем виде задача математически записывается так:
U = f(X) ® max; X Î W,
Где X = (Х1, Х2,…, Хn);
W – область допустимых значений переменных Х1, Х2,…, Хn;
f(X) – целевая функция.
Для того, чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать X() Î W такое, что f(X()) ³ f(X), при любом X Î W, или для случая минимизации - что f(X()) ≤ f(X), при любом X Î W.
Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешима, если целевая функция f(X) не ограничена сверху на допустимом множестве W.
Методы решения оптимизационных задач зависят как от вида целевой функции f(X), так и от строения допустимого множества W. Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.
В математическом программировании принято выделять следующие основные задачи в зависимости от вида целевой функции f(X) и от области W:
· задачи линейного программирования, если f(X) и W линейны;
· задачи целочисленного программирования, если ставится условие целочисленности переменных Х1, Х2,…, Хn;
· задачи нелинейного программирования, если форма f(X) носит нелинейный характер.
Задачи линейного программирования.
Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:
f(X) = å СjXj ® max(min);