Курсовая работа: Экспериментальное исследование сварочных процессов
.
Рассчитываем изотермы в пределах от х=-0,8 см до х=46,45 см. приведены Графики изотерм представлены ниже.
Данные изотермы построены для температур Тнир , ТАС1 , ТАС3 , ТМн (перечислены в порядке возрастания эксцентриситета вдоль оси ОХ).
3.5 Расчёт распределения температур в поперечном сечении шва
Проводим расчёт распределения температур в поперечном сечении шва, т. е. вдоль оси Y, на поверхности металла при х={1; 2; 3; 4} см. Расчёт ведем по формуле, выведенной в разделе 4.3. Графики представлены ниже.
Термический цикл точек сварного соединения.
Термический цикл строим для . По формуле для ширины зоны с температурой выше заданной, см. Для построения графика используем формулу
.
График представлен ниже.
3.6 Определение протяжённости отдельных участков в ЗТВ
Величина ЗТВ зависит от способа сварки, её режима, химического состава свариваемого и присадочного металла, физических свойств свариваемых металлов, и т. д. Увеличение сварочного тока, снижение скорости сварки увеличивают ширину ЗТВ.
Протяжённость отдельных участков ЗТВ для стали 30ХМА определим из строения ЗТВ для данного сварного соединения. Температурные интервалы участков:
1. участок неполного расплавления: ,
2. участок перегрева: ,
3. участок нормализации: ,
4. участок неполной перекристаллизации: ,
5. участок рекристаллизации:
6. участок синеломкости: .
3.7 Распределение максимальных температур в поперечном сечении шва
Для определения протяжённости отдельных участков ЗТВ необходимо построить график распределения максимальных температур в поперечном сечении шва.
Для построения этого графика используем формулу
(7.12 [1]).
График распределения максимальных температур в поперечном сечении шва показан ниже.
Ширины зон с температурами, превышающими характерные температуры, приведены ниже:
ширина участка | |||
Тпл | 1536 | 0,57 | см |
Тпере | 1500 | 0,58 | см |
Тпере2 | 1100 | 0,61 | см |
Тнорм | 905 | 0,78 | см |
Тнпкр | 727 | 0,80 | см |
Трекр | 450 | 0,94 | см |
Тсине | 200 | 0,96 | см |
Откуда можно видеть, что ширины соответствующих зон составляют:
ширина зоны | в см |
Неполного расплавления | 0,01 |
Перегрева | 0,03 |
Нормализации | 0,17 |
Неполной перекристаллизации | 0,02 |
Рекристаллизации | 0,14 |
Синеломкости | 0,02 |
4. Анализ процесса формирования первичной структуры сварного соединения
Кристаллизация расплавленного металла состоит из двух элементарных параллельно протекающих процессов: зарождения зародышей, или центров кристаллизации, и роста этих центров кристаллизации.
В зависимости от способов образования зародышей различают гомогенную и гетерогенную кристаллизацию. В чистом от примесей металле при охлаждении зародыши образуются из наиболее крупных фазовых флуктуаций жидкой фазы, выделение которых связано с флуктуациями энергии (гомогенное зарождение). В технических металлах всегда имеются дисперсные включения примесей, на поверхности которых и происходит образование центров кристаллизации (гетерогенное зарождение).
В результате воздействия сварочного источника тепловой энергии основной металл начинает плавиться, а металл, ограниченный изотермой Т=Тпл , образует сварочную ванну. Сварочная ванна перемещается по свариваемому изделию вместе с источником тепловой энергии. После затвердевания расплавленного металла сварочной ванны образуется шов.
На кристаллизацию расплавленного металла сварочной ванны оказывают влияние следующие условия: