Курсовая работа: Экспериментальное исследование сварочных процессов
- происходящий параллельно кристаллизации ввод в сварочную ванну движущимся источником тепловой энергии, скорость движения которого определяет скорость перемещения фронта кристаллизации;
- малый объём и небольшое время существования сварочной ванны, большие средние скорости роста кристаллов;
- значительный градиент температур в ванне, перегрев металла в центре шва;
- интенсивное перемешивание металла ванны;
- воздействие на кристаллизующийся металл термодеформационного цикла сварки.
В процессе кристаллизации металла шва формируется его первичная структура[1] , определяемая формой, размерами, взаимным расположением кристаллитов, размером дендридных образований и фазовых выделений. Форма межфазной поверхности фронта кристаллизации может быть плоской (при стыковой сварке стержней), цилиндрической (сварка пластин встык с полным проплавлением), пространственной (сварка массивного изделия).
При затвердевании расплавленного металла сварочной ванны преобладает гетерогенный процесс кристаллизации, и только в центре шва возможна гомогенная кристаллизация.
Под влиянием конкретных тепловых и кинетических условий кристаллизации металла шва, химического состава сплава, градиента температуры, скоростей сварки и кристаллизации в различных зонах шва, возможно образование разных первичных структур – столбчатой, полиэдрической. Эти структуры могут быть ячеистыми, ячеисто-дендридными, дендридными.
Скорость кристаллизации Vкр и градиент температур в жидкой фазе grad(T) оказывающий наиболее существенное влияние на образующуюся структуру, можно рационально подбирать и изменять при сварке. Температурный градиент в жидкости может быть повышен увеличением тепловой мощности дуги путём изменения режима сварки в сторону увеличения тока и напряжения, либо понижен при предварительном подогреве.
Первичная структура шва оказывает большое влияние на многие свойства наплавленного металла, особенно если в недалёком будущем его не подвергать термообработке, прокатке или ковке. Поэтому важно, чтобы первичная структура была зернистой и, по возможности, равноосной. Тогда свойства металла будут достаточно высокими и без термообработки.
Пути регулирования процессов первичной кристаллизации:
- для уменьшения химической неоднородности и повышения стойкости металла к образованию горячих трещин, необходим подбор оптимального соотношения между шириной В и глубиной Н сварочной ванны.
- чтобы получить металл высокой прочности и пластичности, стойкий к возникновению кристаллизационных трещин, необходимо измельчать его структуру, что можно, в частности, достигнуть введением в сварочную ванну элементов-модификаторов (бор, титан, ванадий, ниобий, цинк и т.д.), либо искусственным повышением скорости кристаллизации.
- введение в сварочную ванну элементов, способствующих образованию избыточных фаз типа твёрдого раствора, первичных карбидов, что имеет особое значение при сварке легированных сталей и цветных металлов.
- воздействием на ванну ультразвуком, механическими вибрациями, электромагнитным полем.
5. Анализ процессов в ЗТВ
В процессе сварки происходит изменение структуры и свойств участков основного металла, прилегающих к шву.
Зона термического влияния (ЗТВ) – участок основного металла, примыкающий к сварному шву, структура и свойства которого вследствие теплового воздействия сварочного источника тепловой энергии изменяются.
ЗТВ имеет несколько структурных участков, отличающихся формой и строением зерна, в зависимости от температуры нагрева.
Участок неполного расплавления – переходный от наплавленного металла к основному. На этом участке образуется соединение и проходит граница сплавления. Он представляет собой очень узкую область основного металла, нагретого ниже линии ликвидуса, но выше линии солидуса. В этой зоне наблюдается значительный рост зёрен и скопления примесей, поэтому этот участок обычно является слабым местом сварного соединения, обладая пониженной прочностью и пластичностью.
Участок перегрева – область основного металла, нагреваемого до температурного диапазона 1100..1500°С. Металл этого участка претерпевает аллотропическое превращение Feα →Feγ . Металл этой зоны отличается крупнозернистой структурой и пониженными механическими свойствами.
Участок нормализации – область металла, нагреваемая до температур 905-1100°С. Металл этого участка обладает высокими механическими свойствами, ввиду мелкозернистой структуры.
Участок неполной перекристаллизации – зона, металл которой нагревается до 727–905°С. Неполная перекристаллизация этого участка обусловлена недостатком времени и низкой температурой нагрева. Структура состоит из мелких перекристаллизовавшихся и крупных зёрен. По сравнению с участком нормализации, механические свойства несколько понижены.
Участок рекристаллизации – область металла, нагреваемого до температур 380–727°С. Рекристаллизация – изменение структуры деформированного металла при его нагреве выше определённой температуры. При этом искажённая кристаллическая структура переходит в ненапряжённую.
Участок старения (синеломкости) – нагреваемый до 200–380°С металл – переходный между ЗТВ и основным металлом. Спустя некоторое время могут происходить процессы старения в связи с выпадением карбидов и нитридов железа. Заметных структурных превращений нет.
6. Оценка технологической прочности сварного соединения
6.1 Горячие трещины сварного соединения
Горячими трещинами называются хрупкие межкристаллитные разрушения в шве или ЗТВ, возникающие в области температурного интервала хрупкости в результате воздействия термодеформационного сварочного цикла. Горячие трещины чаще всего возникают в сплавах, обладающих выраже?