Курсовая работа: Экспертные системы как прикладная область искусственного интеллекта

Пример:

· проектирование конфигураций ЭВМ VАХ - 11/780 в системе ХСОN (или R1), проектирование БИС - САDHELР;

· синтез электрических цепей - SYN и другие.

Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

Пример:

· предсказание погоды - система WILLARD;

· оценки будущего урожая - РLANT;

· прогнозы в экономике - ЕСОN и другие.

Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких экспертных системах используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

Пример:

· планирование поведения робота - STRIPS;

· планирование промышленных заказов - ISIS;

· планирование эксперимента - МОLGЕN и другие.

Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Пример:

· обучение языку программирования Лисп в системе «Учитель Лиспа»;

· система РROUSТ - обучение языку Паскаль и другие.

В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза.Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа - это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование.

Классификация по связи с реальным временем

Статические экспертные системы разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны.

Пример.

Диагностика неисправностей в автомобиле.

Квазидинамические экспертные системы интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

Пример. Микробиологические экспертные системы, в которых снимаются лабораторные измерения с технологического процесса один раз в 4-5 ч. (например, производство лизина) и анализируется динамика полученных показателей по отношению к предыдущему измерению.

Динамические экспертные системы работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступаемых данных.

Пример. Управление гибкими производственными комплексами, мониторинг в реанимационных палатах и так далее.

Классификация по типу ЭВМ

На сегодняшний день существуют:

· экспертные системы для уникальных стратегически важных задач на суперЭВМ (Эльбрус, CRAY, CONVEXи другие.);

К-во Просмотров: 300
Бесплатно скачать Курсовая работа: Экспертные системы как прикладная область искусственного интеллекта